cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A384325 Expansion of Product_{k>=1} 1/(1 - k*x)^((3/4)^k).

Original entry on oeis.org

1, 12, 114, 1084, 11319, 136920, 1981228, 34705656, 731268315, 18203860748, 524073230394, 17111173850652, 623571696107069, 25046605210733184, 1097919954149781264, 52109508350206511840, 2660615337817983390318, 145353541761618312219336
Offset: 0

Views

Author

Seiichi Manyama, May 26 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 20; A[] = 1; Do[A[x] = -3*A[x] + 4*A[x/(1-x)]^(3/4) / (1-x)^3 + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Vaclav Kotesovec, May 27 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(exp(4*sum(k=1, N, sum(j=0, k, 3^j*j!*stirling(k, j, 2))*x^k/k)))

Formula

G.f. A(x) satisfies A(x) = A(x/(1-x))^(3/4) / (1-x)^3.
G.f.: exp(4 * Sum_{k>=1} A032033(k) * x^k/k).
G.f.: B(x)^12, where B(x) is the g.f. of A090353.
a(n) ~ (n-1)! / log(4/3)^(n+1). - Vaclav Kotesovec, May 27 2025

A384326 Expansion of Product_{k>=1} 1/(1 - k*x)^((4/5)^k).

Original entry on oeis.org

1, 20, 290, 3940, 55695, 872904, 15862460, 343510120, 8931896095, 276115329860, 9954870557826, 410042908659060, 18954497571869745, 969420292296268320, 54253252462944958560, 3293672518482920204544, 215400856153695252763320, 15088195059520554250863840
Offset: 0

Views

Author

Seiichi Manyama, May 26 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 20; A[] = 1; Do[A[x] = -4*A[x] + 5*A[x/(1-x)]^(4/5) / (1-x)^4 + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Vaclav Kotesovec, May 27 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(exp(5*sum(k=1, N, sum(j=0, k, 4^j*j!*stirling(k, j, 2))*x^k/k)))

Formula

G.f. A(x) satisfies A(x) = A(x/(1-x))^(4/5) / (1-x)^4.
G.f.: exp(5 * Sum_{k>=1} A094417(k) * x^k/k).
G.f.: B(x)^20, where B(x) is the g.f. of A090356.
a(n) ~ (n-1)! / log(5/4)^(n+1). - Vaclav Kotesovec, May 27 2025

A384305 Expansion of Product_{k>=1} 1/(1 - k*x)^((5/6)^k).

Original entry on oeis.org

1, 30, 615, 11260, 205695, 4013406, 88035585, 2255192280, 68859250020, 2506898720040, 107238427737876, 5281094776037040, 293625956135692020, 18139856902224931080, 1229886945212115522060, 90641666662687182976896, 7206758883035555464430370, 614391718014749017022916060
Offset: 0

Views

Author

Seiichi Manyama, May 26 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 20; A[] = 1; Do[A[x] = -5*A[x] + 6*A[x/(1-x)]^(5/6) / (1-x)^5 + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Vaclav Kotesovec, May 31 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(exp(6*sum(k=1, N, sum(j=0, k, 5^j*j!*stirling(k, j, 2))*x^k/k)))

Formula

G.f. A(x) satisfies A(x) = A(x/(1-x))^(5/6) / (1-x)^5.
G.f.: exp(6 * Sum_{k>=1} A094418(k) * x^k/k).
G.f.: B(x)^30, where B(x) is the g.f. of A090358.
a(n) ~ (n-1)! / log(6/5)^(n+1). - Vaclav Kotesovec, May 31 2025

A384332 Expansion of Product_{k>=1} (1 + k*x)^((2/3)^k).

Original entry on oeis.org

1, 6, 3, 20, -207, 2538, -36381, 599760, -11210229, 234779146, -5455240455, 139445920452, -3892724842549, 117916363928070, -3854035833235839, 135241405277665656, -5072575747811807052, 202559732310632082120, -8581116791103001216108
Offset: 0

Views

Author

Seiichi Manyama, May 26 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 20; A[] = 1; Do[A[x] = -2*A[x] + 3*A[x/(1+x)]^(2/3) * (1+x)^2 + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Vaclav Kotesovec, May 27 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(exp(3*sum(k=1, N, (-1)^(k-1)*sum(j=0, k, 2^j*j!*stirling(k, j, 2))*x^k/k)))

Formula

G.f. A(x) satisfies A(x) = (1+x)^2 * A(x/(1+x))^(2/3).
G.f.: exp(3 * Sum_{k>=1} (-1)^(k-1) * A004123(k+1) * x^k/k).
G.f.: 1/B(-x), where B(x) is the g.f. of A384324.
G.f.: B(x)^6, where B(x) is the g.f. of A384344.
a(n) ~ (-1)^(n+1) * (n-1)! / log(3/2)^(n+1). - Vaclav Kotesovec, May 27 2025
Showing 1-4 of 4 results.