A384347 Heinz numbers of integer partitions with exactly two possible ways to choose disjoint strict partitions of each part.
5, 7, 21, 22, 25, 26, 33, 35, 39, 49, 102, 114, 130, 147, 154, 165, 170, 175, 190, 195, 231, 238, 242, 255, 275, 285
Offset: 1
Examples
The prime indices of 275 are {3,3,5}, with two ways to choose disjoint strict partitions of each part: ((3),(2,1),(5)) and ((2,1),(3),(5)). Hence 275 is in the sequence. The terms together with their prime indices begin: 5: {3} 7: {4} 21: {2,4} 22: {1,5} 25: {3,3} 26: {1,6} 33: {2,5} 35: {3,4} 39: {2,6} 49: {4,4} 102: {1,2,7} 114: {1,2,8} 130: {1,3,6} 147: {2,4,4} 154: {1,4,5} 165: {2,3,5}
Crossrefs
These are positions of 2 in A383706.
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&]; Select[Range[100],Length[pof[prix[#]]]==2&]
Comments