A384348 Number of integer partitions of n with no proper way to choose disjoint strict partitions of each part.
1, 1, 2, 2, 4, 6, 7, 11, 17, 25, 30, 44, 61, 82, 113, 141, 193, 249, 327, 422, 548, 682, 881, 1106, 1400, 1751
Offset: 0
Keywords
Examples
For the partition y = (5,4,2,1) we have the following proper ways to choose strict partitions of each part: ((5),(3,1),(2),(1)) ((4,1),(4,2),(1)) ((4,1),(3,1),(2),(1)) ((3,2),(4),(2),(1)) ((3,2),(3,1),(2),(1)) But none of this is disjoint, so y is counted under a(12). The a(1) = 1 through a(8) = 17 partitions: (1) (2) (21) (22) (32) (222) (322) (332) (11) (111) (31) (41) (321) (331) (422) (211) (221) (411) (421) (431) (1111) (311) (2211) (511) (521) (2111) (3111) (2221) (611) (11111) (21111) (3211) (2222) (111111) (4111) (3221) (22111) (3311) (31111) (4211) (211111) (5111) (1111111) (22211) (32111) (41111) (221111) (311111) (2111111) (11111111)
Crossrefs
These partitions are ranked by A384349.
Programs
-
Mathematica
pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&]; Table[Length[Select[IntegerPartitions[n],Length[pofprop[#]]==0&]],{n,0,15}]
Comments