A384349 Heinz numbers of integer partitions with no proper way to choose disjoint strict partitions of each part.
1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 24, 27, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 104, 105, 108, 110, 112, 116, 117, 120, 124, 125, 126, 128, 132, 135
Offset: 1
Keywords
Examples
The prime indices of 102 are {1,2,7}, which has proper disjoint choice ((1),(2),(3,4)), so 102 is not in the sequence. The terms together with their prime indices begin: 1: {} 27: {2,2,2} 63: {2,2,4} 2: {1} 28: {1,1,4} 64: {1,1,1,1,1,1} 3: {2} 30: {1,2,3} 66: {1,2,5} 4: {1,1} 32: {1,1,1,1,1} 68: {1,1,7} 6: {1,2} 36: {1,1,2,2} 70: {1,3,4} 8: {1,1,1} 40: {1,1,1,3} 72: {1,1,1,2,2} 9: {2,2} 42: {1,2,4} 75: {2,3,3} 10: {1,3} 44: {1,1,5} 76: {1,1,8} 12: {1,1,2} 45: {2,2,3} 78: {1,2,6} 14: {1,4} 48: {1,1,1,1,2} 80: {1,1,1,1,3} 15: {2,3} 50: {1,3,3} 81: {2,2,2,2} 16: {1,1,1,1} 52: {1,1,6} 84: {1,1,2,4} 18: {1,2,2} 54: {1,2,2,2} 88: {1,1,1,5} 20: {1,1,3} 56: {1,1,1,4} 90: {1,2,2,3} 24: {1,1,1,2} 60: {1,1,2,3} 92: {1,1,9}
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&]; Select[Range[100],Length[pofprop[prix[#]]]==0&]
Comments