A384350 Number of subsets of {1..n} containing at least one element that is a sum of distinct non-elements.
0, 0, 0, 1, 4, 13, 33, 81, 183, 402, 856, 1801, 3721, 7646, 15567, 31575
Offset: 0
Examples
For the set s = {1,5} we have 5 = 2+3, so s is counted under a(5). The a(0) = 0 through a(5) = 13 subsets: . . . {3} {3} {3} {4} {4} {2,4} {5} {3,4} {1,5} {2,4} {2,5} {3,4} {3,5} {4,5} {1,4,5} {2,3,5} {2,4,5} {3,4,5}
Crossrefs
Programs
-
Mathematica
nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]]; Table[Length[Select[Subsets[Range[n]],Intersection[#,Total/@nonsets[#]]!={}&]],{n,0,10}]
Comments