A384389 Number of proper ways to choose disjoint strict integer partitions of each prime index of n.
0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 3, 0, 0, 0, 4, 0, 5, 0, 1, 1, 7, 0, 2, 1, 0, 0, 9, 0, 11, 0, 1, 2, 1, 0, 14, 2, 1, 0, 17, 0, 21, 0, 0, 4, 26, 0, 2, 0, 2, 0, 31, 0, 2, 0, 3, 4, 37, 0, 45, 6, 0, 0, 3, 0, 53, 0, 4, 0, 63, 0, 75, 7, 0, 0, 2, 0, 88, 0, 0, 9
Offset: 1
Keywords
Examples
The prime indices of 65 are {3,6}, and we have proper choices: ((3),(5,1)), ((3),(4,2)), ((2,1),(6)). Hence a(65) = 3. The prime indices of 175 are {3,3,4}, and we have choices: ((3),(2,1),(4)), ((2,1),(3),(4)), both already proper. Hence a(175) = 2.
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&]; Table[Length[pofprop[prix[n]]],{n,100}]
Formula
a(prime(n)) = A000009(n) - 1.
Comments