cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A384396 Position of first appearance of n in A384389 (proper choices of disjoint strict partitions of each prime index).

Original entry on oeis.org

1, 5, 11, 13, 17, 19, 62, 23, 111, 29, 123, 31, 129, 217, 37, 141, 106, 41, 159, 391, 118, 43
Offset: 0

Views

Author

Gus Wiseman, Jun 03 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
By "proper" we exclude the case of all singletons, which is disjoint when n is squarefree.

Crossrefs

Positions of first appearances in A384389.
A000041 counts integer partitions, strict A000009.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say partitions, ranks A351294
A351293 counts non-Look-and-Say partitions, ranks A351295.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&];
    lv=Table[Length[pofprop[prix[n]]],{n,100}];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    Table[Position[lv,x][[1,1]],{x,0,mnrm[lv+1]-1}]

A383707 Heinz numbers of maximally refined strict integer partitions.

Original entry on oeis.org

1, 2, 3, 6, 10, 14, 15, 30, 42, 66, 70, 78, 105, 110, 182, 210, 330, 390
Offset: 1

Views

Author

Gus Wiseman, May 15 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
Also squarefree numbers such that every strict partition of a prime index contains a prime index.
Also squarefree numbers such that no prime index is a sum of distinct non prime indices.

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    6: {1,2}
   10: {1,3}
   14: {1,4}
   15: {2,3}
   30: {1,2,3}
   42: {1,2,4}
   66: {1,2,5}
   70: {1,3,4}
   78: {1,2,6}
  105: {2,3,4}
  110: {1,3,5}
  182: {1,4,6}
  210: {1,2,3,4}
  330: {1,2,3,5}
  390: {1,2,3,6}
		

Crossrefs

Partitions of this type are counted by A179009.
Appears to be positions of 1 in A383706.
For distinct prime indices see A384320.
The proper version appears to be A384390.
The conjugate version is A384723.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
    Select[Range[30],SquareFreeQ[#]&&With[{y=prix[#]},Intersection[y,Total/@nonsets[y]]=={}]&]

A384390 Heinz numbers of integer partitions with a unique proper way to choose disjoint strict partitions of each part.

Original entry on oeis.org

5, 7, 21, 22, 26, 33, 35, 39, 102, 114, 130, 154, 165, 170, 190, 195, 231, 238, 255, 285
Offset: 1

Views

Author

Gus Wiseman, Jun 02 2025

Keywords

Comments

By "proper" we exclude the case of all singletons, which is disjoint in the strict case.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The strict partition (7,2,1) with Heinz number 102 can only be properly refined as ((4,3),(2),(1)), so 102 is in the sequence. The other refinement ((7),(2),(1)) is not proper.
The terms together with their prime indices begin:
    5: {3}
    7: {4}
   21: {2,4}
   22: {1,5}
   26: {1,6}
   33: {2,5}
   35: {3,4}
   39: {2,6}
  102: {1,2,7}
  114: {1,2,8}
  130: {1,3,6}
  154: {1,4,5}
  165: {2,3,5}
  170: {1,3,7}
  190: {1,3,8}
  195: {2,3,6}
  231: {2,4,5}
  238: {1,4,7}
  255: {2,3,7}
  285: {2,3,8}
		

Crossrefs

The non-proper version is A383707, counted by A179009.
Partitions of this type are counted by A384319, non-strict A384323 (ranks A384347).
This is the unique case of A384321, counted by A384317.
This is the case of a unique proper choice in A384322.
The complement is A384349 \/ A384393.
These are positions of 1 in A384389.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.
A357982 counts strict partitions of each prime index, non-strict A299200.
Cf. A382912, counted by A383710, odd case A383711.
Cf. A382913, counted by A383708, odd case A383533.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&];
    Select[Range[100],Length[pofprop[prix[#]]]==1&]

A384349 Heinz numbers of integer partitions with no proper way to choose disjoint strict partitions of each part.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 24, 27, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 104, 105, 108, 110, 112, 116, 117, 120, 124, 125, 126, 128, 132, 135
Offset: 1

Views

Author

Gus Wiseman, Jun 03 2025

Keywords

Comments

By "proper" we exclude the case of all singletons, which is disjoint when n is squarefree.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The prime indices of 102 are {1,2,7}, which has proper disjoint choice ((1),(2),(3,4)), so 102 is not in the sequence.
The terms together with their prime indices begin:
     1: {}           27: {2,2,2}        63: {2,2,4}
     2: {1}          28: {1,1,4}        64: {1,1,1,1,1,1}
     3: {2}          30: {1,2,3}        66: {1,2,5}
     4: {1,1}        32: {1,1,1,1,1}    68: {1,1,7}
     6: {1,2}        36: {1,1,2,2}      70: {1,3,4}
     8: {1,1,1}      40: {1,1,1,3}      72: {1,1,1,2,2}
     9: {2,2}        42: {1,2,4}        75: {2,3,3}
    10: {1,3}        44: {1,1,5}        76: {1,1,8}
    12: {1,1,2}      45: {2,2,3}        78: {1,2,6}
    14: {1,4}        48: {1,1,1,1,2}    80: {1,1,1,1,3}
    15: {2,3}        50: {1,3,3}        81: {2,2,2,2}
    16: {1,1,1,1}    52: {1,1,6}        84: {1,1,2,4}
    18: {1,2,2}      54: {1,2,2,2}      88: {1,1,1,5}
    20: {1,1,3}      56: {1,1,1,4}      90: {1,2,2,3}
    24: {1,1,1,2}    60: {1,1,2,3}      92: {1,1,9}
		

Crossrefs

The non-proper version appears to be A382912, counted by A383710.
The non-proper complement appears to be A382913, counted by A383708.
The complement is A384321, counted by A384317.
These partitions are counted by A384348.
These are the positions of 0 in A384389.
The case of a unique proper choice is A384390, counted by A384319.
A048767 is the Look-and-Say transform, fixed points A048768.
A056239 adds up prime indices, row sums of A112798.
A179009 counts maximally refined strict partitions, ranks A383707.
A279790 and A279375 count ways to choose disjoint strict partitions of prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&];
    Select[Range[100],Length[pofprop[prix[#]]]==0&]

A384393 Heinz numbers of integer partitions with more than one proper way to choose disjoint strict partitions of each part.

Original entry on oeis.org

11, 13, 17, 19, 23, 25, 29, 31, 34, 37, 38, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118, 119, 121, 122, 123, 127, 129, 131, 133, 134
Offset: 1

Views

Author

Gus Wiseman, Jun 02 2025

Keywords

Comments

By "proper" we exclude the case of all singletons, which is disjoint when n is squarefree.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The prime indices of 275 are {3,3,5}, with a total of 2 proper choices: ((3),(2,1),(5)) and ((2,1),(3),(5)), so 275 is in the sequence.
The terms together with their prime indices begin:
    11: {5}      51: {2,7}      82: {1,13}
    13: {6}      53: {16}       83: {23}
    17: {7}      55: {3,5}      85: {3,7}
    19: {8}      57: {2,8}      86: {1,14}
    23: {9}      58: {1,10}     87: {2,10}
    25: {3,3}    59: {17}       89: {24}
    29: {10}     61: {18}       91: {4,6}
    31: {11}     62: {1,11}     93: {2,11}
    34: {1,7}    65: {3,6}      94: {1,15}
    37: {12}     67: {19}       95: {3,8}
    38: {1,8}    69: {2,9}      97: {25}
    41: {13}     71: {20}      101: {26}
    43: {14}     73: {21}      103: {27}
    46: {1,9}    74: {1,12}    106: {1,16}
    47: {15}     77: {4,5}     107: {28}
    49: {4,4}    79: {22}      109: {29}
		

Crossrefs

Without "proper" we get A384321 (strict A384322), counted by A384317 (strict A384318).
The case of no choices is A384349, counted by A384348.
These are positions of terms > 1 in A384389.
The case of a unique proper choice is A384390, counted by A384319.
Partitions of this type are counted by A384395.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say partitions, ranks A351294 or A381432.
A279790 and A279375 count ways to choose disjoint strict partitions of prime indices.
A351293 counts non-Look-and-Say partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&];
    Select[Range[100],Length[pofprop[prix[#]]]>1&]

A384394 Number of proper ways to choose disjoint strict integer partitions, one of each conjugate prime index of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jun 03 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
By "proper" we exclude the case of all singletons.

Examples

			The prime indices of 216 are {1,1,1,2,2,2}, with conjugate partition (6,3), with proper choices ((6),(2,1)), ((5,1),(3)), and ((4,2),(3)), so a(216) = 3.
		

Crossrefs

Conjugate prime indices are the rows of A122111.
The non-proper version is A384005, conjugate A383706.
This is the conjugate version of A384389 (firsts A384396).
A000041 counts integer partitions, strict A000009.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.
See also A382912, counted by A383710, odd case A383711.
See also A382913, counted by A383708, odd case A383533.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&];
    Table[Length[pofprop[conj[prix[n]]]],{n,100}]
Showing 1-6 of 6 results.