A384390 Heinz numbers of integer partitions with a unique proper way to choose disjoint strict partitions of each part.
5, 7, 21, 22, 26, 33, 35, 39, 102, 114, 130, 154, 165, 170, 190, 195, 231, 238, 255, 285
Offset: 1
Keywords
Examples
The strict partition (7,2,1) with Heinz number 102 can only be properly refined as ((4,3),(2),(1)), so 102 is in the sequence. The other refinement ((7),(2),(1)) is not proper. The terms together with their prime indices begin: 5: {3} 7: {4} 21: {2,4} 22: {1,5} 26: {1,6} 33: {2,5} 35: {3,4} 39: {2,6} 102: {1,2,7} 114: {1,2,8} 130: {1,3,6} 154: {1,4,5} 165: {2,3,5} 170: {1,3,7} 190: {1,3,8} 195: {2,3,6} 231: {2,4,5} 238: {1,4,7} 255: {2,3,7} 285: {2,3,8}
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&]; Select[Range[100],Length[pofprop[prix[#]]]==1&]
Comments