A384393 Heinz numbers of integer partitions with more than one proper way to choose disjoint strict partitions of each part.
11, 13, 17, 19, 23, 25, 29, 31, 34, 37, 38, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118, 119, 121, 122, 123, 127, 129, 131, 133, 134
Offset: 1
Keywords
Examples
The prime indices of 275 are {3,3,5}, with a total of 2 proper choices: ((3),(2,1),(5)) and ((2,1),(3),(5)), so 275 is in the sequence. The terms together with their prime indices begin: 11: {5} 51: {2,7} 82: {1,13} 13: {6} 53: {16} 83: {23} 17: {7} 55: {3,5} 85: {3,7} 19: {8} 57: {2,8} 86: {1,14} 23: {9} 58: {1,10} 87: {2,10} 25: {3,3} 59: {17} 89: {24} 29: {10} 61: {18} 91: {4,6} 31: {11} 62: {1,11} 93: {2,11} 34: {1,7} 65: {3,6} 94: {1,15} 37: {12} 67: {19} 95: {3,8} 38: {1,8} 69: {2,9} 97: {25} 41: {13} 71: {20} 101: {26} 43: {14} 73: {21} 103: {27} 46: {1,9} 74: {1,12} 106: {1,16} 47: {15} 77: {4,5} 107: {28} 49: {4,4} 79: {22} 109: {29}
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&]; Select[Range[100],Length[pofprop[prix[#]]]>1&]
Comments