A384395 Number of integer partitions of n with more than one proper way to choose disjoint strict partitions of each part.
0, 0, 0, 0, 0, 1, 2, 1, 4, 5, 8, 8, 12, 17, 22, 29, 31, 40, 50, 65, 77, 101, 112, 135, 162, 201
Offset: 0
Examples
For the partition (8,5,2) we have four choices: ((8),(4,1),(2)) ((7,1),(5),(2)) ((5,3),(4,1),(2)) ((4,3,1),(5),(2)) Hence (8,5,2) is counted under a(15). The a(5) = 1 through a(12) = 12 partitions: (5) (6) (7) (8) (9) (10) (11) (12) (3,3) (4,4) (5,4) (5,5) (6,5) (6,6) (5,3) (6,3) (6,4) (7,4) (7,5) (7,1) (7,2) (7,3) (8,3) (8,4) (8,1) (8,2) (9,2) (9,3) (9,1) (10,1) (10,2) (4,3,3) (5,3,3) (11,1) (4,4,2) (5,5,1) (5,5,2) (6,3,3) (6,4,2) (6,5,1) (9,2,1)
Crossrefs
Programs
-
Mathematica
pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&]; Table[Length[Select[IntegerPartitions[n],Length[pofprop[#]]>1&]],{n,0,15}]
Comments