A384393
Heinz numbers of integer partitions with more than one proper way to choose disjoint strict partitions of each part.
Original entry on oeis.org
11, 13, 17, 19, 23, 25, 29, 31, 34, 37, 38, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118, 119, 121, 122, 123, 127, 129, 131, 133, 134
Offset: 1
The prime indices of 275 are {3,3,5}, with a total of 2 proper choices: ((3),(2,1),(5)) and ((2,1),(3),(5)), so 275 is in the sequence.
The terms together with their prime indices begin:
11: {5} 51: {2,7} 82: {1,13}
13: {6} 53: {16} 83: {23}
17: {7} 55: {3,5} 85: {3,7}
19: {8} 57: {2,8} 86: {1,14}
23: {9} 58: {1,10} 87: {2,10}
25: {3,3} 59: {17} 89: {24}
29: {10} 61: {18} 91: {4,6}
31: {11} 62: {1,11} 93: {2,11}
34: {1,7} 65: {3,6} 94: {1,15}
37: {12} 67: {19} 95: {3,8}
38: {1,8} 69: {2,9} 97: {25}
41: {13} 71: {20} 101: {26}
43: {14} 73: {21} 103: {27}
46: {1,9} 74: {1,12} 106: {1,16}
47: {15} 77: {4,5} 107: {28}
49: {4,4} 79: {22} 109: {29}
These are positions of terms > 1 in
A384389.
Partitions of this type are counted by
A384395.
A279790 and
A279375 count ways to choose disjoint strict partitions of prime indices.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&];
Select[Range[100],Length[pofprop[prix[#]]]>1&]
A384348
Number of integer partitions of n with no proper way to choose disjoint strict partitions of each part.
Original entry on oeis.org
1, 1, 2, 2, 4, 6, 7, 11, 17, 25, 30, 44, 61, 82, 113, 141, 193, 249, 327, 422, 548, 682, 881, 1106, 1400, 1751
Offset: 0
For the partition y = (5,4,2,1) we have the following proper ways to choose strict partitions of each part:
((5),(3,1),(2),(1))
((4,1),(4,2),(1))
((4,1),(3,1),(2),(1))
((3,2),(4),(2),(1))
((3,2),(3,1),(2),(1))
But none of this is disjoint, so y is counted under a(12).
The a(1) = 1 through a(8) = 17 partitions:
(1) (2) (21) (22) (32) (222) (322) (332)
(11) (111) (31) (41) (321) (331) (422)
(211) (221) (411) (421) (431)
(1111) (311) (2211) (511) (521)
(2111) (3111) (2221) (611)
(11111) (21111) (3211) (2222)
(111111) (4111) (3221)
(22111) (3311)
(31111) (4211)
(211111) (5111)
(1111111) (22211)
(32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
The strict version for at least one proper choice is
A384318, ranked by
A384322.
These partitions are ranked by
A384349.
-
pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&];
Table[Length[Select[IntegerPartitions[n],Length[pofprop[#]]==0&]],{n,0,15}]
Showing 1-2 of 2 results.
Comments