A384423 The number of prime powers (not including 1) p^e that divide n such that e is unitarily coprime to the p-adic valuation of n.
0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 4, 2, 2, 2, 2, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 4, 3, 2, 1, 3, 2, 2, 2
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := p^e - 1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; ff[p_, e_] := uphi[e]; a[1] = 0; a[n_] := Plus @@ ff @@@ FactorInteger[n]; Array[a, 100]
-
PARI
uphi(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^f[i, 2]-1);} a(n) = vecsum(apply(uphi, factor(n)[, 2]));
Comments