A384445 a(n) is the number of multisets of n decimal digits where the sum of the digits equals the product of the prime digits.
5, 6, 7, 10, 23, 43, 74, 125, 199, 305, 449, 637, 885, 1216, 1649, 2184, 2852, 3664, 4657, 5863, 7298, 9002, 10993, 13312, 16000, 19084, 22613, 26606, 31120, 36192, 41867, 48220, 55317, 63232, 72022, 81746, 92479, 104282, 117229, 131393, 146843, 163652, 181892
Offset: 1
Examples
a(3) = 7 because exactly for the 7 multisets with 3 digits {0, 0, 1}, {0, 0, 2}, {0, 0, 3}, {0, 0, 5}, {0, 0, 7}, {0, 2, 2} and {1, 2, 3} their sum equals the product of the prime digits. a(4) = 10 because exactly for the 10 multisets with 4 digits {0, 0, 0, 1}, {0, 1, 2, 3}, {1, 2, 4, 7}, {1, 3, 5, 6}, {0, 0, 0, 2}, {0, 0, 2, 2}, {0, 0, 0, 3}, {0, 0, 0, 5}, {5, 5, 6, 9} and {0, 0, 0, 7} their sum equals the product of the prime digits.
Links
- Felix Huber, Table of n, a(n) for n = 1..200
Programs
-
Maple
f:=proc(p,n) local c,d,i,l,m,r,s,t,u,w,x,y,z; m:={0,1,4,6,8,9}; t:=seq(cat(x,i),i in m); y:={l='Union'(t),w='Set'(l),t=~'Atom'}; d:=(map2(apply,s,{t})=~m) union {s(w)='Set'(s(l))}; Order:=p+1; r:=combstruct:-agfseries(y,d,'unlabeled',z,[[u,s]])[w(z,u)]; r:=collect(convert(r,'polynom'),[z,u],'recursive'); c:=coeff(r,z,p); coeff(c,u,n) end proc: A384445:=proc(n) local a,k,m,s,p,j,L; a:=1; for k from 9*n to 1 by -1 do L:=ifactors(k)[2]; m:=nops(L); if m>0 and L[m,1]<=7 then p:=n-add(L[j,2],j=1..m); s:=k-add(L[j,1]*L[j,2],j=1..m); if s=0 and p>=0 then a:=a+1 elif p>0 and s>0 then a:=a+f(p,s) fi fi od; return a end proc; seq(A384445(n),n=1..43);