A384460 Decimal expansion of Sum_{k>=1} (-1)^(k+1)*H(k)^2/k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.
4, 4, 2, 4, 6, 0, 1, 8, 9, 3, 7, 7, 9, 1, 2, 4, 9, 5, 2, 1, 8, 7, 9, 8, 2, 1, 9, 1, 7, 4, 6, 5, 6, 3, 3, 5, 1, 8, 4, 1, 3, 3, 6, 2, 7, 0, 2, 2, 5, 8, 3, 5, 8, 5, 8, 6, 4, 2, 6, 3, 2, 9, 3, 4, 7, 1, 2, 3, 6, 3, 9, 2, 6, 3, 0, 8, 6, 1, 0, 9, 8, 3, 6, 6, 5, 3, 1, 3, 5, 5, 1, 6, 5, 3, 1, 0, 1, 9, 7, 0, 9, 4, 8, 8, 3
Offset: 0
Examples
0.44246018937791249521879821917465633518413362702258...
References
- Ovidiu Furdui, Limits, Series, and Fractional Part Integrals, Springer, 2013, section 3.4, p. 148.
Crossrefs
Programs
-
Mathematica
RealDigits[(9*Zeta[3] + 4*Log[2]^3 - Pi^2*Log[2])/12, 10, 120][[1]]
-
PARI
(9*zeta(3) + 4*log(2)^3 - Pi^2*log(2))/12
Formula
Equals (9*zeta(3) + 4*log(2)^3 - Pi^2*log(2))/12.