A384471
a(n) = Sum_{k=0..n} binomial(n,k)^2 * Stirling2(2*k,k) * Stirling2(2*n-2*k,n-k).
Original entry on oeis.org
1, 2, 18, 306, 8046, 296100, 14307254, 865996306, 63308257198, 5432272670376, 535074966419260, 59461066810476232, 7354069129792197762, 1001371912804041913056, 148806933109572134044158, 23958722845801073318076450, 4154065510530807075869275150, 771608888261061026185781127184
Offset: 0
-
Table[Sum[StirlingS2[2*k, k]*StirlingS2[2*n-2*k, n-k]*Binomial[n, k]^2, {k, 0, n}], {n, 0, 20}]
A384472
a(n) = Sum_{k=0..n} binomial(n,k)^3 * Stirling2(2*k,k) * Stirling2(2*n-2*k,n-k).
Original entry on oeis.org
1, 2, 22, 558, 25506, 1770300, 166190354, 19647687682, 2798281247682, 466166725448544, 88942246964278060, 19127775950813311232, 4578817457796314714502, 1207681779462031251096888, 348018457509475159702959174, 108798555057988053563408904750, 36676526343321856806298038370210
Offset: 0
-
Table[Sum[StirlingS2[2*k, k]*StirlingS2[2*n-2*k, n-k]*Binomial[n, k]^3, {k, 0, n}], {n, 0, 20}]
A384491
a(n) = n!^2 * Sum_{k=0..n} Stirling2(2*k,k) * Stirling2(2*n-2*k,n-k) / binomial(n,k)^2.
Original entry on oeis.org
1, 2, 57, 6536, 1966816, 1226860992, 1373652478656, 2507498281198080, 6966291361870181376, 27969794062091821670400, 155875927262331497576140800, 1167389777699203314381963264000, 11441270265465265986005655905894400, 143525982910350708912088976768630784000
Offset: 0
-
Table[n!^2 * Sum[StirlingS2[2*k, k] * StirlingS2[2*n-2*k, n-k] / Binomial[n, k]^2, {k, 0, n}], {n, 0, 15}]
-
a(n) = n!^2 * sum(k=0, n, stirling(2*k,k, 2) * stirling(2*n-2*k,n-k,2) / binomial(n,k)^2); \\ Michel Marcus, May 31 2025
A384492
a(n) = n!^3 * Sum_{k=0..n} Stirling2(2*k,k) * Stirling2(2*n-2*k,n-k) / binomial(n,k)^3.
Original entry on oeis.org
1, 2, 113, 38992, 47071264, 147015606528, 988250901343488, 12631667044878213120, 280790763724247161061376, 10147405862241529912885248000, 565550513462476798468573003776000, 46592777163703224212146175606784000000, 5479872142880875751798643810680954683392000
Offset: 0
-
Table[n!^3 * Sum[StirlingS2[2*k, k] * StirlingS2[2*n-2*k, n-k] / Binomial[n, k]^3, {k, 0, n}], {n, 0, 15}]
-
a(n) = n!^3 * sum(k=0, n, stirling(2*k,k,2) * stirling(2*n-2*k,n-k,2) / binomial(n,k)^3); \\ Michel Marcus, May 31 2025
Showing 1-4 of 4 results.
Comments