cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384494 Triangle read by rows: T(n, k) = (-1)^k*(k+1)*(n+1-k)!, n >= 0, k = 0..n.

Original entry on oeis.org

1, 2, -2, 6, -4, 3, 24, -12, 6, -4, 120, -48, 18, -8, 5, 720, -240, 72, -24, 10, -6, 5040, -1440, 360, -96, 30, -12, 7, 40320, -10080, 2160, -480, 120, -36, 14, -8, 362880, -80640, 15120, -2880, 600, -144, 42, -16, 9, 3628800, -725760, 120960, -20160, 3600, -720, 168, -48, 18, -10
Offset: 0

Views

Author

Wolfdieter Lang, May 31 2025

Keywords

Comments

This triangle, written as (infinite) square matrix MT with vanishing upper diagonals 0, together with the Riordan triangle A104698, written also as such a square matrix MR, appears in the double sum formula for the number of certain restricted permutations given in A086852(n), as diagonal sequence A086852(n+2) = (2*MR*MT^t)_{n,n}, for n >=0, where t indicates matrix transpositon.

Examples

			The triangle T begins:
  n\k        0        1       2       3     4     5   6   7  8    9 ...
  ---------------------------------------------------------------------
  0:         1
  1:         2       -2
  2:         6       -4       3
  3:        24      -12       6      -4
  4:       120      -48      18      -8     5
  5:       720     -240      72     -24    10    -6
  6:      5040    -1440     360     -96    30   -12   7
  7:     40320   -10080    2160    -480    12   -36  14  -8
  8:    362880   -80640   15120   -2880   600  -144  42 -16  9
  9:   3628800  -725760  120960  -20160  3600  -720 168 -48 18 -10
  ...
		

Crossrefs

Column sequences: A000142(n+1), -A052849, A052560(n-1), -A052578(n-2), A052648(n-3), -A298881(n-4), A062098(n-5), -A159038(n-6), ...

Programs

  • Mathematica
    Table[(-1)^k * (k+1) * (n+1-k)!, {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 31 2025 *)

Formula

T(n, k) = (-1)^k*(k+1)*(n+1-k)!, for n >= 0 and k = 0, 1, ..., n.
O.g.f. of row polynomials P(n, y) := Sum_{k=0..n} T(n, k) y^k: G(x, y) = ((N(x) - 1)/x) * (1/(1 + y*x)^2), with N(x) = hypergeometric([1,1], [], x), the o.g.f. of {n!}_{n>=0} (see A000142).