A384494 Triangle read by rows: T(n, k) = (-1)^k*(k+1)*(n+1-k)!, n >= 0, k = 0..n.
1, 2, -2, 6, -4, 3, 24, -12, 6, -4, 120, -48, 18, -8, 5, 720, -240, 72, -24, 10, -6, 5040, -1440, 360, -96, 30, -12, 7, 40320, -10080, 2160, -480, 120, -36, 14, -8, 362880, -80640, 15120, -2880, 600, -144, 42, -16, 9, 3628800, -725760, 120960, -20160, 3600, -720, 168, -48, 18, -10
Offset: 0
Examples
The triangle T begins: n\k 0 1 2 3 4 5 6 7 8 9 ... --------------------------------------------------------------------- 0: 1 1: 2 -2 2: 6 -4 3 3: 24 -12 6 -4 4: 120 -48 18 -8 5 5: 720 -240 72 -24 10 -6 6: 5040 -1440 360 -96 30 -12 7 7: 40320 -10080 2160 -480 12 -36 14 -8 8: 362880 -80640 15120 -2880 600 -144 42 -16 9 9: 3628800 -725760 120960 -20160 3600 -720 168 -48 18 -10 ...
Crossrefs
Programs
-
Mathematica
Table[(-1)^k * (k+1) * (n+1-k)!, {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 31 2025 *)
Formula
T(n, k) = (-1)^k*(k+1)*(n+1-k)!, for n >= 0 and k = 0, 1, ..., n.
O.g.f. of row polynomials P(n, y) := Sum_{k=0..n} T(n, k) y^k: G(x, y) = ((N(x) - 1)/x) * (1/(1 + y*x)^2), with N(x) = hypergeometric([1,1], [], x), the o.g.f. of {n!}_{n>=0} (see A000142).
Comments