cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384517 Nonsquarefree numbers that are squarefree numbers raised to an even power.

Original entry on oeis.org

4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 169, 196, 225, 256, 289, 361, 441, 484, 529, 625, 676, 729, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1681, 1764, 1849, 2116, 2209, 2401, 2601, 2809, 3025, 3249, 3364, 3481, 3721, 3844, 4096, 4225, 4356
Offset: 1

Views

Author

Amiram Eldar, Jun 01 2025

Keywords

Comments

Differs from its subsequence A340674 by having the terms 64, 729, 1024, 4096, .... .
Numbers whose prime factorization exponents are equal and even.

Crossrefs

Intersection of A000290 and A072777.
Equals A072777 \ A384518.
A340674 is a subsequence.

Programs

  • Mathematica
    Select[Range[2, 100], SameQ @@ FactorInteger[#][[;;, 2]] &]^2
  • PARI
    isok(k) = {my(s, e = ispower(k, , &s)); !(e % 2) && issquarefree(s);}
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A384517(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1		
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x): return sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        def f(x): return n+x-sum(g(integer_nthroot(x,e)[0])-1 for e in range(2,x.bit_length(),2))
        return bisection(f,n,n) # Chai Wah Wu, Jun 01 2025

Formula

a(n) = A062770(n)^2 = A072774(n+1)^2.
Sum_{n>=1} 1/a(n) = Sum_{k>=1} (zeta(2*k)/zeta(4*k)-1) = Sum{k>=1} (A231327(k)/(A231273(k)*Pi^(2*k)) - 1) = 0.62022193512079649421... .