cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384518 Nonsquarefree numbers that are squarefree numbers raised to an odd power.

Original entry on oeis.org

8, 27, 32, 125, 128, 216, 243, 343, 512, 1000, 1331, 2048, 2187, 2197, 2744, 3125, 3375, 4913, 6859, 7776, 8192, 9261, 10648, 12167, 16807, 17576, 19683, 24389, 27000, 29791, 32768, 35937, 39304, 42875, 50653, 54872, 59319, 68921, 74088, 78125, 79507, 97336, 100000
Offset: 1

Views

Author

Amiram Eldar, Jun 01 2025

Keywords

Comments

Subsequence of A097054 and first differs from it at n = 12: A097054(12) = 1728 = 2^6 * 3^3 is not a term of this sequence.
Numbers whose prime factorization exponents are equal, odd and larger than 1.

Crossrefs

Intersection of A072777 and A268335.
Equals A072777 \ A384517.
Subsequence of A097054.
Cf. A005117.

Programs

  • Mathematica
    Select[Range[10^5], Length[(u = Union[FactorInteger[#][[;; , 2]]])] == 1 && u[[1]] > 1 && OddQ[u[[1]]] &]
  • PARI
    isok(k) = {my(s, e = ispower(k, , &s)); e % 2 && issquarefree(s);}
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A384518(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1		
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x): return sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        def f(x): return n+x-sum(g(integer_nthroot(x,e)[0])-1 for e in range(3,x.bit_length(),2))
        return bisection(f,n,n) # Chai Wah Wu, Jun 01 2025

Formula

Sum_{n>=1} 1/a(n) = Sum_{k>=1} (zeta(2*k+1)/zeta(4*k+2)-1) = 0.22841193284408713846... .