A384518 Nonsquarefree numbers that are squarefree numbers raised to an odd power.
8, 27, 32, 125, 128, 216, 243, 343, 512, 1000, 1331, 2048, 2187, 2197, 2744, 3125, 3375, 4913, 6859, 7776, 8192, 9261, 10648, 12167, 16807, 17576, 19683, 24389, 27000, 29791, 32768, 35937, 39304, 42875, 50653, 54872, 59319, 68921, 74088, 78125, 79507, 97336, 100000
Offset: 1
Keywords
Links
Crossrefs
Programs
-
Mathematica
Select[Range[10^5], Length[(u = Union[FactorInteger[#][[;; , 2]]])] == 1 && u[[1]] > 1 && OddQ[u[[1]]] &]
-
PARI
isok(k) = {my(s, e = ispower(k, , &s)); e % 2 && issquarefree(s);}
-
Python
from math import isqrt from sympy import mobius, integer_nthroot def A384518(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def g(x): return sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) def f(x): return n+x-sum(g(integer_nthroot(x,e)[0])-1 for e in range(3,x.bit_length(),2)) return bisection(f,n,n) # Chai Wah Wu, Jun 01 2025
Formula
Sum_{n>=1} 1/a(n) = Sum_{k>=1} (zeta(2*k+1)/zeta(4*k+2)-1) = 0.22841193284408713846... .
Comments