A384553 Primes p for which there exists more than one triple of primes q, r, s such that p^3 = q^3 + r^3 + s^3.
28477, 33199, 49069, 234181, 300239, 403549, 463501, 958933, 982337, 1044227, 1352873, 1385861, 1713121, 1834321, 1994911, 2364673, 2531687, 2839927, 3048691, 3364553, 3546031, 3640543, 3897739, 3941711, 4000907, 4264219, 4273459, 4594399, 4599709, 4620037, 4924979
Offset: 1
Keywords
Examples
28477^3 = 3739^3 + 17203^3 + 26183^3 = 10781^3 + 11071^3 + 27361^3. 33199^3 = 2833^3 + 19081^3 + 30941^3 = 15187^3 + 24197^3 + 26647^3. 49069^3 = 661^3 + 37441^3 + 40343^3 = 22307^3 + 37243^3 + 38119^3.
Links
- Zhining Yang, Table of n, a(n) for n = 1..52