cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384590 a(n) = floor(X(n,n)), where X(n,n) is the largest zero of the Laguerre polynomial of degree n.

Original entry on oeis.org

1, 3, 6, 9, 12, 15, 19, 22, 26, 29, 33, 37, 40, 44, 48, 51, 55, 59, 62, 66, 70, 73, 77, 81, 85, 89, 92, 96, 100, 104, 107, 111, 115, 119, 123, 126, 130, 134, 138, 142, 146, 149, 153, 157, 161, 165, 169, 172, 176, 180, 184, 188, 192, 196, 199, 203, 207, 211
Offset: 1

Views

Author

A.H.M. Smeets, Jun 14 2025

Keywords

Comments

For X(k,n), the k-th smallest zero of the Laguerre polynomial of degree n, see formula section of A091476, for large n and relative small k, k << n.
Some terms for large n:
a(1000) = floor(3943.2473948452...), a(2000) = floor(7927.9014222639...), a(4000) = floor(15908.5812117320...), a(8000) = floor(31884.2511300626...), a(16000) = floor(63853.6067816122...), a(32000) = floor(127815.0051094389...), a(64000) = floor(255766.3763209512...), a(128000) = floor(511705.1129209706...), a(256000) = floor(1023627.9299056501...), a(512000) = floor(2047530.6886230061...).

Crossrefs

Cf. A091476.
Cf. 1+A014176 (n=2), A384279 (n=3), A384587 (n=4).

Programs

Formula

Limit_{n -> oo} X(n,n)/n = 4.
a(n) ~ floor(4*n + 2 - 5.8917*n^(1/3)).