A384590 a(n) = floor(X(n,n)), where X(n,n) is the largest zero of the Laguerre polynomial of degree n.
1, 3, 6, 9, 12, 15, 19, 22, 26, 29, 33, 37, 40, 44, 48, 51, 55, 59, 62, 66, 70, 73, 77, 81, 85, 89, 92, 96, 100, 104, 107, 111, 115, 119, 123, 126, 130, 134, 138, 142, 146, 149, 153, 157, 161, 165, 169, 172, 176, 180, 184, 188, 192, 196, 199, 203, 207, 211
Offset: 1
Keywords
Links
- A.H.M. Smeets, Table of n, a(n) for n = 1..12245
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy], Table 25.9.
- A.H.M. Smeets, Abscissas and weight factors for Laguerre integration for some larger degrees.
- Eric Weisstein's World of Mathematics, Laguerre Polynomial.
- Eric Weisstein's World of Mathematics, Laguerre-Gauss Quadrature.
Programs
-
Mathematica
A384590[n_] := Floor[Root[LaguerreL[n, #] &, n]]; Array[A384590, 70] (* Paolo Xausa, Jun 26 2025 *)
Formula
Limit_{n -> oo} X(n,n)/n = 4.
a(n) ~ floor(4*n + 2 - 5.8917*n^(1/3)).
Comments