cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A384279 Decimal expansion of the largest zero of the Laguerre polynomial of degree 3.

Original entry on oeis.org

6, 2, 8, 9, 9, 4, 5, 0, 8, 2, 9, 3, 7, 4, 7, 9, 1, 9, 6, 8, 6, 6, 4, 1, 5, 7, 6, 5, 5, 1, 2, 1, 3, 1, 6, 5, 7, 4, 9, 3, 5, 2, 0, 8, 6, 6, 2, 4, 6, 6, 0, 0, 7, 0, 0, 8, 7, 0, 8, 3, 2, 7, 9, 7, 5, 9, 3, 6, 4, 4, 5, 2, 8, 7, 2, 5, 9, 2, 0, 2, 3, 8, 4, 7, 9, 6, 1
Offset: 1

Views

Author

A.H.M. Smeets, May 26 2025

Keywords

Examples

			6.28994508293747919686641576551213165749352086624660...
		

Crossrefs

Cf. A384590.
There are k positive real zeros of the Laguerre polynomial of degree k:
k | zeros | corresponding weights for Laguerre-Gauss quadrature
---+------------------------------------------+-----------------------------------------------------
3 | A384277, A384278, this sequence | A384463, A384464, A384465

Programs

  • Mathematica
    First[RealDigits[Root[LaguerreL[3, #] &, 3], 10, 100]] (* Paolo Xausa, Jun 05 2025 *)

Formula

largest root of x^3 - 9 x^2 + 18 x - 6 = 0.

A384589 Decimal expansion of the weight factor for Laguerre-Gauss quadrature corresponding to abscissa A384587.

Original entry on oeis.org

0, 0, 0, 5, 3, 9, 2, 9, 4, 7, 0, 5, 5, 6, 1, 3, 2, 7, 4, 5, 0, 1, 0, 3, 7, 9, 0, 5, 6, 7, 6, 2, 0, 5, 9, 3, 2, 1, 2, 2, 7, 7, 2, 5, 6, 9, 6, 6, 4, 3, 3, 2, 4, 4, 0, 8, 5, 4, 6, 6, 4, 9, 9, 4, 7, 7, 9, 0, 1, 0, 9, 1, 7, 5, 6, 9, 3, 7, 2, 3, 0, 2, 7, 8, 5, 7, 9, 1, 1, 6
Offset: 0

Views

Author

A.H.M. Smeets, Jun 14 2025

Keywords

Examples

			0.00053929470556132745010379056762059321227725696643324...
		

Crossrefs

Cf. A384590.
There are k positive real zeros of the Laguerre polynomial of degree k:
k | zeros | corresponding weights for Laguerre-Gauss quadrature
---+------------------------------------------+-----------------------------------------------------
4 | A384280, A384281, A384586, A384587 | A384466, A384467, A384588, this sequence

Programs

  • Mathematica
    First[RealDigits[Root[1990656*#^4 - 1990656*#^3 + 504576*#^2 - 16960*# + 9 &, 1], 10, 100, -1]] (* Paolo Xausa, Jun 26 2025 *)
  • PARI
    solve(x = 0.0, 0.01, 1990656*x^4 - 1990656*x^3 + 504576*x^2 - 16960*x + 9)

Formula

Smallest root of 1990656*x^4 - 1990656*x^3 + 504576*x^2 - 16960*x + 9 = 0.
Showing 1-2 of 2 results.