A384597 Integers k such that k + 1 has a divisor that is an anagram of k, which must have the same number of digits as k.
1, 41, 73, 631, 793, 6031, 6391, 6733, 7412, 7520, 7993, 8627, 9710, 25147, 37112, 43916, 49316, 51427, 60031, 60391, 60733, 62314, 63214, 63991, 66331, 67393, 67933, 70211, 71132, 72101, 74102, 74912, 75020, 75290, 78260, 79993, 81103, 85712, 86927, 89627
Offset: 1
Examples
73 is in this sequence since 73 + 1 = 37*2, where 37 is an anagram of 73.
Crossrefs
Cf. A100412.
Programs
-
Mathematica
{1}~Join~Select[Range[100000],ContainsAny[IntegerDigits/@Divisors[#+1],Complement[Permutations[IntegerDigits[#]],{IntegerDigits[#]}]]&] (* James C. McMahon, Jun 10 2025 *)
-
PARI
isok(k) = my(s=vecsort(digits(k))); fordiv(k+1, d, if (vecsort(digits(d)) == s, return(1))); \\ Michel Marcus, Jun 04 2025
-
Python
def ok(k): return any((k+1)%d==0 and sorted(str(d))==sorted(str(k)) and len(str(d))==len(str(k)) for d in range(1,k+2)) print(", ".join(map(str, [k for k in range(1, 100000) if ok(k)])))
Comments