cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A384618 Primes preceded and followed by gaps whose quotient (value greater or equal to 1) is greater than 2.

Original entry on oeis.org

29, 31, 59, 61, 73, 113, 127, 137, 139, 149, 151, 179, 181, 191, 199, 223, 239, 241, 269, 271, 283, 307, 317, 331, 347, 419, 421, 431, 433, 467, 521, 523, 541, 569, 571, 599, 601, 619, 641, 659, 661, 673, 773, 809, 811, 821, 829, 853, 863, 877, 887, 907, 953, 967
Offset: 1

Views

Author

Alain Rocchelli, Jun 04 2025

Keywords

Comments

Primes prime(k) such that Max(prime(k)-prime(k-1),prime(k+1)-prime(k)) / Min(prime(k)-prime(k-1),prime(k+1)-prime(k)) > 2.

Examples

			19 is not a term because Max(19-17,23-19)/Min(19-17,23-19) = 4/2 = 2.
29 is a term because Max(29-23,31-29)/Min(29-23,31-29) = 6/2 = 3.
31 is a term because Max(31-29,37-31)/Min(31-29,37-31) = 6/2 = 3.
37 is not a term because Max(37-31,41-37)/Min(37-31,41-37) = 6/4 = 1.5.
		

Crossrefs

Cf. A384603.

Programs

  • PARI
    forprime(P=3, 1000, my(M=P-precprime(P-1), Q=nextprime(P+1)-P, AR=max(M, Q)/min(M, Q), AR0=2); if(AR>AR0, print1(P, ", ")));
    
  • Python
    from itertools import islice
    from sympy import nextprime
    def A384618_gen(): # generator of terms
        p,q,r = 2,3,5
        while True:
            s, t = q-p, r-q
            if s>(t<<1) or t>(s<<1): yield q
            p, q, r = q, r, nextprime(r)
    A384618_list = list(islice(A384618_gen(),54)) # Chai Wah Wu, Jun 10 2025

Formula

Conjecture: Limit_{n->oo} n / PrimePi(a(n)) = 2/3.

A385093 Primes preceded and followed by gaps whose quotient (value greater or equal to 1) is greater than 2 and less than 3.

Original entry on oeis.org

331, 953, 1381, 1861, 2161, 2357, 2371, 2423, 2879, 3229, 3271, 3407, 3491, 3607, 3643, 3691, 3889, 4057, 4073, 4139, 4201, 4507, 4567, 4751, 4831, 4903, 4987, 5059, 5153, 5297, 5309, 5683, 5897, 6029, 6053, 6067, 6173, 6229, 6529, 6599, 6653, 6857, 7079, 7151, 7159, 7193, 7283, 7417, 7717, 7867, 7963
Offset: 1

Views

Author

Alain Rocchelli, Jun 17 2025

Keywords

Comments

Primes prime(k) such that 2 < Max(prime(k)-prime(k-1), prime(k+1)-prime(k)) / Min(prime(k)-prime(k-1), prime(k+1)-prime(k)) < 3.

Examples

			331 is a term because Max(331-317,337-331)/Min(331-317,337-331) = 14/6 = 2.3333.
953 is a term because Max(953-947,967-953)/Min(953-947,967-953) = 14/6 = 2.3333.
1381 is a term because Max(1381-1373,1399-1381)/Min(1381-1373,1399-1381) = 18/8 = 2.25.
		

Crossrefs

Programs

  • Mathematica
    Prime/@Select[Range[3,1000],2James C. McMahon, Jun 29 2025 *)
  • PARI
    forprime(P=3, 8000, my(M=P-precprime(P-1), Q=nextprime(P+1)-P, AR=max(M,Q)/min(M,Q)); if(AR>2 && AR<3, print1(P,", ")));

Formula

Conjecture: Limit_{n->oo} n / PrimePi(a(n)) = 1/6.
Showing 1-2 of 2 results.