cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A384747 Triangle read by rows: T(n,k) is the number of rooted ordered trees with node weights summing to n, where the root has weight 0, non-root node weights are in {1,..,k}, and no nodes have the same weight as their parent node.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 5, 6, 0, 1, 11, 15, 16, 0, 1, 26, 39, 43, 44, 0, 1, 63, 110, 123, 127, 128, 0, 1, 153, 308, 358, 371, 375, 376, 0, 1, 376, 869, 1046, 1096, 1109, 1113, 1114, 0, 1, 931, 2499, 3098, 3278, 3328, 3341, 3345, 3346, 0, 1, 2317, 7238, 9283, 9904, 10084, 10134, 10147, 10151, 10152
Offset: 0

Views

Author

John Tyler Rascoe, Jun 09 2025

Keywords

Examples

			Triangle begins:
    k=0  1    2     3     4     5     6     7     8     9
 n=0 [1]
 n=1 [0, 1]
 n=2 [0, 1,   2]
 n=3 [0, 1,   5,    6]
 n=4 [0, 1,  11,   15,   16]
 n=5 [0, 1,  26,   39,   43,   44]
 n=6 [0, 1,  63,  110,  123,  127,  128]
 n=7 [0, 1, 153,  308,  358,  371,  375,  376]
 n=8 [0, 1, 376,  869, 1046, 1096, 1109, 1113, 1114]
 n=9 [0, 1, 931, 2499, 3098, 3278, 3328, 3341, 3345, 3346]
...
T(3,3) = 6 counts:
  o    o    o      o        o        __o__
  |    |    |     / \      / \      /  |  \
 (3)  (2)  (1)  (1) (2)  (2) (1)  (1) (1) (1)
       |    |
      (1)  (2)
		

Crossrefs

Cf. A051286 (column k=2), A382096 (column k=3), A384748 (main diagonal).

Programs

  • PARI
    b(i,j,k,N) = {if(k>N,1, 1/( 1  - sum(u=1,j, if(u==i,0,x^u * b(u,j,k+1,N-u+1)))))}
    Gx(k,N) = {my(x='x+O('x^(N+1))); Vec(1/(1 - sum(i=1,k, b(i,k,1,N)*x^i)))}
    T(max_row) = { my( N = max_row+1, v = vector(N, i, if(i==1, 1, 0))~); for(k=1, N, v=matconcat([v, Gx(k,N)~])); vector(N, n, vector(n, k, v[n, k]))}
    T(9)

Formula

T(n,k) = T(n,n) for k > n.

A384685 Triangle read by rows: T(n,k) is the number of rooted ordered trees with node weights summing to n, where the root has weight 0, all internal nodes have weight 1, and leaf nodes have weights in {1,...,k}.

Original entry on oeis.org

1, 0, 1, 0, 2, 3, 0, 5, 8, 9, 0, 14, 25, 28, 29, 0, 42, 83, 95, 98, 99, 0, 132, 289, 337, 349, 352, 353, 0, 429, 1041, 1236, 1285, 1297, 1300, 1301, 0, 1430, 3847, 4652, 4854, 4903, 4915, 4918, 4919, 0, 4862, 14504, 17865, 18709, 18912, 18961, 18973, 18976, 18977
Offset: 0

Views

Author

John Tyler Rascoe, Jun 06 2025

Keywords

Examples

			Triangle begins:
    k=0     1     2     3     4     5     6     7      8
 n=0 [1]
 n=1 [0,    1]
 n=2 [0,    2,    3]
 n=3 [0,    5,    8,    9]
 n=4 [0,   14,   25,   28,   29]
 n=5 [0,   42,   83,   95,   98,   99]
 n=6 [0,  132,  289,  337,  349,  352,  353]
 n=7 [0,  429, 1041, 1236, 1285, 1297, 1300, 1301]
 n=8 [0, 1430, 3847, 4652, 4854, 4903, 4915, 4918, 4919]
...
T(2,2) = 3 counts:
  o    o      o
  |    |     / \
 (2)  (1)  (1) (1)
       |
      (1)
		

Crossrefs

Cf. (column k=1) A000108, A078481, A078482, A088218, (column k=2) A143330, A380761, A384613.

Programs

  • PARI
    b(k) = {(x^2-x^(k+1))/(1-x)}
    P(N,k) = {my(x='x+O('x^N)); Vec((1-b(k)-sqrt((b(k)-1)^2-4*x))/(2*x))}
    T(max_row) = { my( N = max_row+1, v = vector(N, i, if(i==1,1,0))~); for(k=1,N, v=matconcat([v,P(N+1,k)~])); vector(N,n, vector(n,k,v[n,k]))}

Formula

G.f. of column k is (1 - b(k,x) - sqrt((b(k,x) - 1)^2 - 4*x))/(2*x) where b(k,x) = (x^2 - x^(k + 1))/(1 - x).
T(n,k) = T(n,n) for k > n.

A384748 Number of rooted ordered trees with node weights summing to n, where the root has weight 0, non-root node weights are greater than 0, and no nodes have the same weight as their parent node.

Original entry on oeis.org

1, 1, 2, 6, 16, 44, 128, 376, 1114, 3346, 10152, 31028, 95474, 295532, 919446, 2873388, 9015812, 28390466, 89689586, 284173096, 902780060, 2875016084, 9176388532, 29349499212, 94050228650, 301918397716, 970815092346
Offset: 0

Views

Author

John Tyler Rascoe, Jun 09 2025

Keywords

Examples

			a(3) = 6 counts:
  o    o    o      o        o        __o__
  |    |    |     / \      / \      /  |  \
 (3)  (2)  (1)  (1) (2)  (2) (1)  (1) (1) (1)
       |    |
      (1)  (2)
		

Crossrefs

Cf. A000108, A002212, A143330, A384613, A384685, (main diagonal of A384747).

Programs

  • PARI
    b(i,j,k,N) = {if(k>N,1, 1/(1-sum(u=1,j, if(u==i,0,x^u*b(u,j,k+1,N-u+1)))))}
    Dx(N) = {my(x='x+O('x^(N+1))); Vec(1/(1 - sum(i=1,N, b(i,N,1,N)*x^i)))}
    Dx(10)

Extensions

a(14)-a(26) from David Radcliffe, Jun 10 2025

A382096 Number of rooted ordered trees with node weights summing to n, where the root has weight 0, non-root node weights are in {1,2,3}, and no nodes have the same weight as their parent node.

Original entry on oeis.org

1, 1, 2, 6, 15, 39, 110, 308, 869, 2499, 7238, 21086, 61871, 182523, 540830, 1609238, 4805871, 14398559, 43264896, 130347450, 393650751, 1191441349, 3613345360, 10978726634, 33414836743, 101863289331, 310984519412, 950734751040, 2910319385881, 8919643999157, 27368321239074
Offset: 0

Views

Author

John Tyler Rascoe, Jun 08 2025

Keywords

Examples

			a(3) = 6 counts:
  o    o    o      o        o        __o__
  |    |    |     / \      / \      /  |  \
 (3)  (2)  (1)  (1) (2)  (2) (1)  (1) (1) (1)
       |    |
      (1)  (2)
		

Crossrefs

Cf. A000108, A002212, A143330, A384613, A384685, (column k=3 of A384747).

Programs

  • PARI
    b(i,j,k,N) = {if(k>N,1, 1/(1-sum(u=1,j, if(u==i,0,x^u*b(u,j,k+1,N-u+1)))))}
    Gx(k,N) = {my(x='x+O('x^(N+1))); Vec(1/(1-sum(i=1,k, b(i,k,1,N)*x^i)))}
    Gx(3,20)

Formula

G.f.: G(x) = 1/(1 - b_1(x)*x - b_2(x)*x^2 - b_3(x)*x^3) where b_1(x) = 1/(1 - b_2(x)*x^2 - b_3(x)*x^3), b_2(x) = 1/(1 - b_1(x)*x - b_3(x)*x^3), b_3(x) = 1/(1 - b_1(x)*x - b_2(x)*x^2).
Showing 1-4 of 4 results.