A384628 a(n) = Sum_{k = 1..n} gcd(n, floor(n / k)).
1, 3, 5, 8, 9, 14, 13, 20, 19, 25, 21, 35, 25, 37, 37, 44, 33, 56, 37, 60, 51, 58, 45, 84, 53, 71, 69, 85, 57, 103, 61, 99, 83, 93, 83, 130, 73, 104, 101, 136, 81, 146, 85, 140, 129, 124, 93, 188, 103, 155, 131, 163, 105, 191, 127, 185, 145, 159, 117, 251, 121
Offset: 1
Keywords
Examples
n = 3: a(3) = Sum_{k = 1..3} gcd(3, floor(3 / k)) = 3 + 1 + 1 = 5. n = 4: a(4) = Sum_{k = 1..4} gcd(4, floor(4 / k)) = 4 + 2 + 1 + 1 = 8.
Programs
-
Mathematica
a[n_] := Sum[GCD[n, Floor[n/k]], {k, 1, n}]; Array[a, 100] (* Amiram Eldar, Jun 05 2025 *)
-
PARI
a(n) = sum(k=1, n, gcd(n, n\k)); \\ Michel Marcus, Jun 05 2025
-
Python
from math import gcd def A384628(n): c, j = (n<<1)+1, 2 k1 = n//j while k1>1: j2 = n//k1+1 c += (j2-j)*gcd(n,k1) j, k1 = j2, n//j2 return c-j # Chai Wah Wu, Jun 17 2025
Formula
For p prime: a(p) = 2*p - 1.
Comments