A384634 Expansion of (1+2*x+x^2) / (1-6*x^2-4*x^3+2*x^4).
1, 2, 7, 16, 48, 120, 338, 880, 2412, 6392, 17316, 46240, 124640, 333920, 898168, 2409600, 6475408, 17382432, 46694512, 125377024, 336745984, 904275328, 2428594976, 6521881856, 17515179200, 47037120384, 126321412672, 339239675392, 911046599168, 2446649462272
Offset: 0
Examples
a(2)=7 because we have the walks 2-1-0, 2-1-2, 2-1-3, 2-1-4, 2-3-1, 2-3-2, 2-3-4.
Links
- Sean A. Irvine, Walks on Graphs.
- Index entries for linear recurrences with constant coefficients, signature (0,6,4,-2).
Crossrefs
Programs
-
Maple
a:= n-> (<<0|1|0|0|0>, <1|0|1|1|1>, <0|1|0|1|0>, <0|1|1|0|1>, <0|1|0|1|0>>^n. <<1,1,1,1,1>>)[3,1]: seq(a(n), n=0..32);
-
Mathematica
CoefficientList[Series[(1+2*x+x^2) / (1-6*x^2-4*x^3+2*x^4), {x, 0, 32}], x]
Comments