A384633 Expansion of (1+x-2*x^2-2*x^3) / (1-6*x^2-4*x^3+2*x^4).
1, 1, 4, 8, 26, 62, 180, 460, 1276, 3356, 9136, 24320, 65688, 175752, 473136, 1268624, 3410448, 9152784, 24590912, 66021248, 177335712, 476185568, 1278917440, 3434413760, 9223575488, 24769781184, 66521273088, 178644161536, 479759612288, 1288410499200
Offset: 0
Examples
a(3)=8 because we have the walks 0-1-0-1, 0-1-2-1, 0-1-2-3, 0-1-3-1, 0-1-3-2, 0-1-3-4, 0-1-4-1, 0-1-4-3.
Links
- Sean A. Irvine, Walks on Graphs.
- Index entries for linear recurrences with constant coefficients, signature (0,6,4,-2).
Crossrefs
Programs
-
Maple
a:= n-> (<<0|1|0|0|0>, <1|0|1|1|1>, <0|1|0|1|0>, <0|1|1|0|1>, <0|1|0|1|0>>^n. <<1,1,1,1,1>>)[1,1]: seq(a(n), n=0..32);
-
Mathematica
CoefficientList[Series[(1+x-2*x^2-2*x^3) / (1-6*x^2-4*x^3+2*x^4), {x, 0, 32}], x]
Comments