A384642 Expansion of (1+x-x^2+x^3) / (1-x-5*x^2+x^3+2*x^4).
1, 2, 6, 16, 42, 112, 294, 780, 2054, 5436, 14338, 37904, 100050, 264360, 698030, 1843972, 4869662, 12862772, 33971050, 89727304, 236980458, 625920384, 1653153270, 4366320124, 11532205174, 30458811756, 80447210962, 212476424320, 561189257026, 1482206544152
Offset: 0
Examples
a(2)=6 because we have the walks 3-2-1, 3-2-3, 3-2-4, 3-4-1, 3-4-2, 3-4-3.
Links
- Sean A. Irvine, Walks on Graphs.
- Index entries for linear recurrences with constant coefficients, signature (1,5,-1,-2).
Crossrefs
Programs
-
Maple
a:= n-> (<<0|1|0|0|0>, <1|0|1|0|1>, <0|1|0|1|1>, <0|0|1|0|1>, <0|1|1|1|0>>^n. <<1,1,1,1,1>>)[4,1]: seq(a(n), n=0..32);
-
Mathematica
CoefficientList[Series[(1+x-x^2+x^3) / (1-x-5*x^2+x^3+2*x^4), {x, 0, 32}], x]
Comments