A384647 Expansion of (1+3*x+x^2) / (1-x-5*x^2-2*x^3).
1, 4, 10, 32, 90, 270, 784, 2314, 6774, 19912, 58410, 171518, 503392, 1477802, 4337798, 12733592, 37378186, 109721742, 322079856, 945444938, 2775287702, 8146672104, 23914000490, 70197936414, 206061283072, 604878966122, 1775581254310, 5212098651064
Offset: 0
Examples
a(2)=10 because we have the walks 1-0-1, 1-0-4, 1-2-1, 1-2-3, 1-3-1, 1-3-2, 1-3-4, 1-4-0, 1-4-1, 1-4-3.
Links
- Sean A. Irvine, Walks on Graphs.
- Index entries for linear recurrences with constant coefficients, signature (1,5,2).
Programs
-
Maple
a:= n-> (<<0|1|0|0|1>, <1|0|1|1|1>, <0|1|0|1|0>, <0|1|1|0|1>, <1|1|0|1|0>>^n. <<1,1,1,1,1>>)[2,1]: seq(a(n), n=0..32);
-
Mathematica
CoefficientList[Series[(1+3*x+x^2) / (1-x-5*x^2-2*x^3), {x, 0, 32}], x]
Comments