A384646 Expansion of (1+x) / (1-x-5*x^2-2*x^3).
1, 2, 7, 19, 58, 167, 495, 1446, 4255, 12475, 36642, 107527, 315687, 926606, 2720095, 7984499, 23438186, 68800871, 201960799, 592841526, 1740247263, 5108376491, 14995295858, 44017672839, 129210905111, 379289861022, 1113379732255, 3268250847587, 9593729230906
Offset: 0
Examples
a(2)=7 because we have the walks 0-1-0, 0-1-2, 0-1-3, 0-1-4, 0-4-0, 0-4-1, 0-4-3.
Links
- Sean A. Irvine, Walks on Graphs.
- Index entries for linear recurrences with constant coefficients, signature (1,5,2).
Programs
-
Maple
a:= n-> (<<0|1|0|0|1>, <1|0|1|1|1>, <0|1|0|1|0>, <0|1|1|0|1>, <1|1|0|1|0>>^n. <<1,1,1,1,1>>)[1,1]: seq(a(n), n=0..32);
-
Mathematica
CoefficientList[Series[(1+x) / (1-x-5*x^2-2*x^3), {x, 0, 32}], x]
Comments