A384671 Expansion of (1-x^2) / (1-2*x-5*x^2+2*x^3).
1, 2, 8, 24, 84, 272, 916, 3024, 10084, 33456, 111284, 369680, 1228868, 4083568, 13572116, 45104336, 149902116, 498181680, 1655665268, 5502434704, 18286832388, 60774507760, 201978308052, 671255490128, 2230853504996, 7414027844528, 24639812233780
Offset: 0
Examples
a(2)=8 because we have the walks 0-1-0, 0-1-2, 0-1-3, 0-1-4, 0-4-0, 0-4-1, 0-4-2, 0-4-3.
Links
- Sean A. Irvine, Walks on Graphs.
- Index entries for linear recurrences with constant coefficients, signature (2,5,-2).
Programs
-
Maple
a:= n-> (<<0|1|0|0|1>, <1|0|1|1|1>, <0|1|0|1|1>, <0|1|1|0|1>, <1|1|1|1|0>>^n. <<1,1,1,1,1>>)[1,1]: seq(a(n), n=0..32);
-
Mathematica
CoefficientList[Series[(1-x^2) / (1-2*x-5*x^2+2*x^3), {x, 0, 32}], x]
Comments