A384673 Expansion of (1+x) / (1-2*x-5*x^2+2*x^3).
1, 3, 11, 35, 119, 391, 1307, 4331, 14415, 47871, 159155, 528835, 1757703, 5841271, 19413387, 64517723, 214419839, 712601519, 2368266787, 7870701491, 26157533879, 86932041639, 288910349691, 960165839819, 3191019344815, 10605047189343, 35244859423123
Offset: 0
Examples
a(2)=11 because we have the walks 2-1-0, 2-1-2, 2-1-3, 2-1-4, 2-3-1, 2-3-2, 2-3-4, 2-4-0, 2-4-1, 2-4-2, 2-4-3.
Links
- Sean A. Irvine, Walks on Graphs.
- Index entries for linear recurrences with constant coefficients, signature (2,5,-2).
Programs
-
Maple
a:= n-> (<<0|1|0|0|1>, <1|0|1|1|1>, <0|1|0|1|1>, <0|1|1|0|1>, <1|1|1|1|0>>^n. <<1,1,1,1,1>>)[3,1]: seq(a(n), n=0..32);
-
Mathematica
CoefficientList[Series[(1+x) / (1-2*x-5*x^2+2*x^3), {x, 0, 32}], x]
Comments