A384685 Triangle read by rows: T(n,k) is the number of rooted ordered trees with node weights summing to n, where the root has weight 0, all internal nodes have weight 1, and leaf nodes have weights in {1,...,k}.
1, 0, 1, 0, 2, 3, 0, 5, 8, 9, 0, 14, 25, 28, 29, 0, 42, 83, 95, 98, 99, 0, 132, 289, 337, 349, 352, 353, 0, 429, 1041, 1236, 1285, 1297, 1300, 1301, 0, 1430, 3847, 4652, 4854, 4903, 4915, 4918, 4919, 0, 4862, 14504, 17865, 18709, 18912, 18961, 18973, 18976, 18977
Offset: 0
Examples
Triangle begins: k=0 1 2 3 4 5 6 7 8 n=0 [1] n=1 [0, 1] n=2 [0, 2, 3] n=3 [0, 5, 8, 9] n=4 [0, 14, 25, 28, 29] n=5 [0, 42, 83, 95, 98, 99] n=6 [0, 132, 289, 337, 349, 352, 353] n=7 [0, 429, 1041, 1236, 1285, 1297, 1300, 1301] n=8 [0, 1430, 3847, 4652, 4854, 4903, 4915, 4918, 4919] ... T(2,2) = 3 counts: o o o | | / \ (2) (1) (1) (1) | (1)
Crossrefs
Programs
-
PARI
b(k) = {(x^2-x^(k+1))/(1-x)} P(N,k) = {my(x='x+O('x^N)); Vec((1-b(k)-sqrt((b(k)-1)^2-4*x))/(2*x))} T(max_row) = { my( N = max_row+1, v = vector(N, i, if(i==1,1,0))~); for(k=1,N, v=matconcat([v,P(N+1,k)~])); vector(N,n, vector(n,k,v[n,k]))}
Formula
G.f. of column k is (1 - b(k,x) - sqrt((b(k,x) - 1)^2 - 4*x))/(2*x) where b(k,x) = (x^2 - x^(k + 1))/(1 - x).
T(n,k) = T(n,n) for k > n.