A384706 Integers y such that there exists an integer 0 < x < y such that y/sigma(x) + x/sigma(y) = 1.
14, 20, 42, 54, 62, 88, 99, 108, 114, 124, 126, 132, 189, 195, 204, 210, 220, 238, 252, 254, 272, 284, 328, 340, 385, 414, 420, 432, 455, 464, 468, 495, 508, 528, 560, 572, 608, 621, 630, 663, 693, 748, 828, 837, 870, 888, 1008, 1089, 1136, 1192, 1197, 1210, 1288, 1416, 1422, 1440
Offset: 1
Keywords
Examples
12 and 14 form a cross-harmonious pair since 14/sigma(12) + 12/sigma(14) = 14/28 + 12/24 = 1.
Links
- Robert Israel, Table of n, a(n) for n = 1..500
- S. I. Dimitrov, Generalizations of amicable numbers, arXiv:2408.07387 [math.NT], 2024.
Programs
-
Maple
N:= 10000: # for terms <= N S:= map(numtheory:-sigma, [$1..N]): filter:= proc(x) ormap(y -> y/S[x]+x/S[y]=1, [$1..x-1]) end proc: select(filter, [$1..N]); # Robert Israel, Jul 07 2025
-
PARI
isok(y) = for (x=1, y-1, if (y/sigma(x) + x/sigma(y) == 1, return(x));); \\ Michel Marcus, Jun 09 2025
Comments