cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384711 Expansion of (1+x) / (1-2*x-6*x^2).

Original entry on oeis.org

1, 3, 12, 42, 156, 564, 2064, 7512, 27408, 99888, 364224, 1327776, 4840896, 17648448, 64342272, 234575232, 855204096, 3117859584, 11366943744, 41441044992, 151083752448, 550813774848, 2008130064384, 7321142777856, 26691065942016, 97308988551168
Offset: 0

Views

Author

Sean A. Irvine, Jun 07 2025

Keywords

Comments

Number of walks of length n in the graph K_{1,1,1,2} starting at vertex 0 when the edges are given by {{0,1}, {0,3}, {0,4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}}.
Also, by symmetry, the number of walks of length n starting at vertex 2 in the same graph.

Examples

			a(2)=12 because we have the walks 0-1-0, 0-1-2, 0-1-3, 0-1-4, 0-3-0, 0-3-1, 0-3-2, 0-3-4, 0-4-0, 0-4-1, 0-4-2, 0-4-3.
		

Crossrefs

Cf. A133592, A384712 (vertices 1, 3, 4).

Programs

  • Maple
    a:= n-> (<<0|1|0|1|1>, <1|0|1|1|1>, <0|1|0|1|1>, <1|1|1|0|1>, <1|1|1|1|0>>^n. <<1, 1, 1, 1, 1>>)[1, 1]:
    seq(a(n), n=0..32);
  • Mathematica
    CoefficientList[Series[(1+x) / (1-2*x-6*x^2), {x, 0, 32}], x]

Formula

a(n) = 3*A133592(n)/2 for n>0.