A384712 Expansion of (1+2*x) / (1-2*x-6*x^2).
1, 4, 14, 52, 188, 688, 2504, 9136, 33296, 121408, 442592, 1613632, 5882816, 21447424, 78191744, 285068032, 1039286528, 3788981248, 13813681664, 50361250816, 183604591616, 669376688128, 2440380925952, 8897021980672, 32436329517056, 118254790918144
Offset: 0
Examples
a(2)=14 because we have the walks 1-0-1, 1-0-3, 1-0-4, 1-2-1, 1-2-3, 1-2-4, 1-3-0, 1-3-1, 1-3-2, 1-3-4, 1-4-0, 1-4-1, 1-4-2, 1-4-3.
Links
- Sean A. Irvine, Walks on Graphs.
Programs
-
Maple
a:= n-> (<<0|1|0|1|1>, <1|0|1|1|1>, <0|1|0|1|1>, <1|1|1|0|1>, <1|1|1|1|0>>^n. <<1, 1, 1, 1, 1>>)[2, 1]: seq(a(n), n=0..32);
-
Mathematica
CoefficientList[Series[(1+2*x) / (1-2*x-6*x^2), {x, 0, 32}], x]
Formula
a(n) = A133592(n+1)/2.
Comments