A384723 Heinz numbers of conjugates of maximally refined strict integer partitions.
1, 2, 4, 6, 12, 18, 24, 30, 60, 90, 120, 150, 180, 210, 240, 420, 540, 630, 840, 1050, 1260, 1470, 1680, 1890, 2100, 2310, 2520, 3360, 4620, 6300, 6930, 7560, 9240
Offset: 1
Examples
The terms together with their prime indices begin: 1: {} 2: {1} 4: {1,1} 6: {1,2} 12: {1,1,2} 18: {1,2,2} 24: {1,1,1,2} 30: {1,2,3} 60: {1,1,2,3} 90: {1,2,2,3} 120: {1,1,1,2,3} 150: {1,2,3,3} 180: {1,1,2,2,3} 210: {1,2,3,4} 240: {1,1,1,1,2,3} 420: {1,1,2,3,4} 540: {1,1,2,2,2,3} 630: {1,2,2,3,4} 840: {1,1,1,2,3,4}
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]]; Select[Range[100],With[{y=conj[prix[#]]},UnsameQ@@y&&Intersection[y,Total/@nonsets[y]]=={}]&]
Comments