A384737 a(n) is the number of distinct five-cuboid combinations filling an n X n X n cube only with at least one cut spanning through the full cube.
0, 0, 1, 27, 195, 527, 1487, 2711, 5648, 8694, 15163, 21398, 33514, 44411, 64990, 82431, 114337, 140958, 187742, 225716, 292010, 344238, 434025, 504464, 622802, 714278, 867664, 984013, 1177505, 1324222, 1564296, 1744637, 2039877, 2258715, 2615027, 2879412, 3304797
Offset: 1
Keywords
Examples
A(3) = {{(1,1,2), (1,1,3), (1,2,2), (1,2,3), (2,2,3)}, {(1,1,1), (1,1,2), (1,1,3), (1,3,3), (2,2,3)}}. B(3) = {{(1,1,2), (1,1,3), (1,2,2), (1,2,3), (2,2,3)}}. C(3) = {}. D(3) = B(3) U C(3) = {{(1,1,2), (1,1,3), (1,2,2), (1,2,3), (2,2,3)}}. A(3)-D(3) = {{(1,1,1), (1,1,2), (1,1,3), (1,3,3), (2,2,3)}}. Therefore, a(3) = 1.
Links
- Janaka Rodrigo, Sets of A(n)-D(n) in Triplets Form
Extensions
a(11)-a(37) from Jinyuan Wang, Aug 04 2025
Comments