A384743 a(n) is the number of distinct five-cuboid combinations filling n X n X n cube without allowing a cut spanning through the full cube in any of filling positions.
0, 0, 0, 1, 6, 20, 50, 110, 197, 343, 535, 814, 1171, 1651, 2240, 2996, 3900, 5019, 6333, 7918, 9744, 11905, 14366, 17225, 20451, 24146, 28274, 32955, 38143, 43967, 50380, 57520, 65335, 73976, 83386, 93720, 104925, 117165, 130377, 144743, 160190, 176909, 194831
Offset: 1
Keywords
Examples
A(3) = {{(1,1,2), (1,1,3), (1,2,2), (1,2,3), (2,2,3)}, {(1,1,1), (1,1,2), (1,1,3), (1,3,3), (2,2,3)}}. B(3) = {{(1,1,2), (1,1,3), (1,2,2), (1,2,3), (2,2,3)}}. C(3) = {}. D(3) = B(3) U C(3) = {{(1,1,2), (1,1,3), (1,2,2), (1,2,3), (2,2,3)}}. D(3)-A(3) = {}. Therefore, a(3) = 0.
Links
- Janaka Rodrigo, Sets of D(n)-A(n) in Triplets Form
Extensions
a(11)-a(43) from Jinyuan Wang, Aug 04 2025
Comments