A384747 Triangle read by rows: T(n,k) is the number of rooted ordered trees with node weights summing to n, where the root has weight 0, non-root node weights are in {1,..,k}, and no nodes have the same weight as their parent node.
1, 0, 1, 0, 1, 2, 0, 1, 5, 6, 0, 1, 11, 15, 16, 0, 1, 26, 39, 43, 44, 0, 1, 63, 110, 123, 127, 128, 0, 1, 153, 308, 358, 371, 375, 376, 0, 1, 376, 869, 1046, 1096, 1109, 1113, 1114, 0, 1, 931, 2499, 3098, 3278, 3328, 3341, 3345, 3346, 0, 1, 2317, 7238, 9283, 9904, 10084, 10134, 10147, 10151, 10152
Offset: 0
Examples
Triangle begins: k=0 1 2 3 4 5 6 7 8 9 n=0 [1] n=1 [0, 1] n=2 [0, 1, 2] n=3 [0, 1, 5, 6] n=4 [0, 1, 11, 15, 16] n=5 [0, 1, 26, 39, 43, 44] n=6 [0, 1, 63, 110, 123, 127, 128] n=7 [0, 1, 153, 308, 358, 371, 375, 376] n=8 [0, 1, 376, 869, 1046, 1096, 1109, 1113, 1114] n=9 [0, 1, 931, 2499, 3098, 3278, 3328, 3341, 3345, 3346] ... T(3,3) = 6 counts: o o o o o __o__ | | | / \ / \ / | \ (3) (2) (1) (1) (2) (2) (1) (1) (1) (1) | | (1) (2)
Crossrefs
Programs
-
PARI
b(i,j,k,N) = {if(k>N,1, 1/( 1 - sum(u=1,j, if(u==i,0,x^u * b(u,j,k+1,N-u+1)))))} Gx(k,N) = {my(x='x+O('x^(N+1))); Vec(1/(1 - sum(i=1,k, b(i,k,1,N)*x^i)))} T(max_row) = { my( N = max_row+1, v = vector(N, i, if(i==1, 1, 0))~); for(k=1, N, v=matconcat([v, Gx(k,N)~])); vector(N, n, vector(n, k, v[n, k]))} T(9)
Formula
T(n,k) = T(n,n) for k > n.