A384764 Number of uniquely solveable n X m nonograms (hanjie), read by antidiagonals.
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 14, 8, 1, 1, 16, 52, 52, 16, 1, 1, 32, 210, 384, 210, 32, 1, 1, 64, 816, 3152, 3152, 816, 64, 1, 1, 128, 3206, 24230, 52362, 24230, 3206, 128, 1, 1, 256, 12536, 189898, 814632, 814632, 189898, 12536, 256, 1, 1, 512, 48962, 1473674, 12819322, 25309575, 12819322, 1473674, 48962, 512, 1
Offset: 0
Examples
A(2,2) = 16-2 because out of the possible 2^(2*2) grids, only 10/01 and 01/10 have the same row and column clues. Top left corner of the array: 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 4, 8, 16, 32, 64, ... 1, 4, 14, 52, 210, 816, 3206, ... 1, 8, 52, 384, 3152, 24230, 189898, ... 1, 16, 210, 3152, 52362, 814632, 12819322, ... 1, 32, 816, 24230, 814632, 25309575, 794378773, ... 1, 64, 3206, 189898, 12819322, 794378773, 49745060669, ...
Links
- Bertram Felgenhauer, Antidiagonals n+m = 0..13, flattened
- Bertram Felgenhauer, Counting Nonograms.
- Wikipedia, Nonogram.
Crossrefs
Formula
Basic properties include A(n,m) = A(m,n), A(n,m) <= 2^(n*m), A(0,n) = A(n,0) = 1, and A(1,n) = A(n,1) = 2^n.
Comments