cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384783 The number of unordered factorizations of the n-th powerful number into 1 and prime powers p^e where p is prime and e >= 2 (A025475).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 2, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 1, 2, 7, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 8, 1, 4, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 1, 1, 2, 1, 12, 1, 1, 4, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 4, 1, 1, 1, 2, 2, 2, 2, 14, 1, 4, 1, 1, 7, 1, 2
Offset: 1

Views

Author

Amiram Eldar, Jun 10 2025

Keywords

Comments

The positive terms in A188585.

Examples

			a(5) = 2 since the 5th powerful number, A001694(5) = 16, has 2 factorizations: 2^2 * 2^2 and 2^4.
a(11) = 4 since the 11th powerful number, A001694(11) = 64, has 4 factorizations: 2^2 * 2^2 * 2^2, 2^2 * 2^4, 2^3 * 2^3, and 2^6.
		

Crossrefs

Cf. A001694, A025475, A188585, A384784, A384785 (cubefull analog).

Programs

  • Mathematica
    f[p_, e_] := PartitionsP[e] - PartitionsP[e-1]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; seq[lim_] := Module[{pow = Union[Flatten[Table[i^2*j^3, {j, 1, Surd[lim, 3]}, {i, 1, Sqrt[lim/j^3]}]]]}, Select[s /@ pow, # > 0 &]]; seq[10^4]
  • PARI
    s(n) = vecprod(apply(x -> numbpart(x)-numbpart(x-1), factor(n)[, 2]));
    pows(lim) = {my(p = List()); for(j = 1, sqrtnint(lim, 3), for(i = 1, sqrtint(lim \ j^3), listput(p, i^2 * j^3))); Set(p); }
    list(lim) = {my(p = pows(lim), v = List(), s1); for(k = 1, #p, s1 = s(p[k]); if(s1 > 0, listput(v, s1))); Vec(v);}

Formula

a(n) = A188585(A001694(n)).