cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A384784 Numbers with a record number of unordered factorizations into 1 and prime powers p^e where p is prime and e >= 2 (A025475).

Original entry on oeis.org

1, 16, 64, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592, 17179869184, 34359738368
Offset: 1

Views

Author

Amiram Eldar, Jun 10 2025

Keywords

Comments

The least term that is not a power of 2 is a(47) = 2^35 * 3^10.
Indices of records in A188585.
All the terms are powerful numbers since A188585(1) = 1 and A188585(n) = 0 if n is a nonpowerful number.
The corresponding record values are 1, 2, 4, 7, 8, 12, 14, 21, 24, 34, 41, 55, 66, 88, ... (see the link for more values).

Crossrefs

Subsequence of A001694 and A025487 (i.e., of A181800).
Cf. A025475, A046055, A188585, A384783, A384786 (cubefull analog).

Programs

  • Mathematica
    f[p_, e_] := PartitionsP[e] - PartitionsP[e-1]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; With[{lps = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]}, sm = -1; seq = {}; Do[s1 = s[lps[[i]]]; If[s1 > sm, sm = s1; AppendTo[seq, lps[[i]]]], {i, 1, Length[lps]}]; seq]

A384785 The number of unordered factorizations of the n-th cubefull number into 1 and prime powers p^e where p is prime and e >= 3 (A246549).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 1, 2, 1, 1, 5, 1, 1, 2, 1, 1, 6, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 9, 1, 1, 2, 1, 2, 3, 1, 3, 1, 2, 10, 1, 1, 1, 2, 1, 1, 2, 1, 4, 1, 2, 2, 2, 13, 1, 1, 2, 1, 1, 4, 1, 3, 1, 2, 2, 1, 1, 1, 5, 1, 1, 1, 1, 2, 3, 17, 2
Offset: 1

Views

Author

Amiram Eldar, Jun 10 2025

Keywords

Comments

The positive values of the multiplicative function f(n) with f(p^e) = A008483(e). Or, equivalently, a(n) is the value of this function at A036966(n).

Examples

			a(6) = 2 since the 6th cubefull number, A036966(6) = 64, has 2 factorizations: 2^3 * 2^3 and 2^6.
a(12) = 3 since the 12th cubefull number, A036966(12) = 256, has 3 factorizations: 2^3 * 2^5, 2^4 * 2^4, and 2^8.
		

Crossrefs

Cf. A008483, A036966, A246549, A384783 (powerful analog), A384786.

Programs

  • Mathematica
    f[p_, e_] := PartitionsP[e] - PartitionsP[e-1] - PartitionsP[e-2] + PartitionsP[e-3]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; seq[lim_] := Module[{cub = Union[Flatten[Table[i^3*j^4*k^5, {k, 1, Surd[lim, 5]}, {j, 1, Surd[lim/k^5, 4]}, {i, 1, Surd[lim/(j^4*k^5), 3]}]]]}, Select[s /@ cub, # > 0 &]]; seq[10^5]
  • PARI
    s(n) = vecprod(apply(x -> numbpart(x)-numbpart(x-1)-numbpart(x-2)+numbpart(x-3), factor(n)[, 2]));
    cubs(lim) = {my(c = List()); for(k = 1, sqrtnint(lim, 5), for(j = 1, sqrtnint(lim \ k^5, 4), for(i = 1, sqrtnint(lim \ (j^4*k^5), 3), listput(c, i^3*j^4*k^5)))); Set(c); }
    list(lim) = {my(c = cubs(lim), v = List(), s1); for(k = 1, #c, s1 = s(c[k]); if(s1 > 0, listput(v, s1))); Vec(v);}
Showing 1-2 of 2 results.