cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A384783 The number of unordered factorizations of the n-th powerful number into 1 and prime powers p^e where p is prime and e >= 2 (A025475).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 2, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 1, 2, 7, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 8, 1, 4, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 1, 1, 2, 1, 12, 1, 1, 4, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 4, 1, 1, 1, 2, 2, 2, 2, 14, 1, 4, 1, 1, 7, 1, 2
Offset: 1

Views

Author

Amiram Eldar, Jun 10 2025

Keywords

Comments

The positive terms in A188585.

Examples

			a(5) = 2 since the 5th powerful number, A001694(5) = 16, has 2 factorizations: 2^2 * 2^2 and 2^4.
a(11) = 4 since the 11th powerful number, A001694(11) = 64, has 4 factorizations: 2^2 * 2^2 * 2^2, 2^2 * 2^4, 2^3 * 2^3, and 2^6.
		

Crossrefs

Cf. A001694, A025475, A188585, A384784, A384785 (cubefull analog).

Programs

  • Mathematica
    f[p_, e_] := PartitionsP[e] - PartitionsP[e-1]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; seq[lim_] := Module[{pow = Union[Flatten[Table[i^2*j^3, {j, 1, Surd[lim, 3]}, {i, 1, Sqrt[lim/j^3]}]]]}, Select[s /@ pow, # > 0 &]]; seq[10^4]
  • PARI
    s(n) = vecprod(apply(x -> numbpart(x)-numbpart(x-1), factor(n)[, 2]));
    pows(lim) = {my(p = List()); for(j = 1, sqrtnint(lim, 3), for(i = 1, sqrtint(lim \ j^3), listput(p, i^2 * j^3))); Set(p); }
    list(lim) = {my(p = pows(lim), v = List(), s1); for(k = 1, #p, s1 = s(p[k]); if(s1 > 0, listput(v, s1))); Vec(v);}

Formula

a(n) = A188585(A001694(n)).

A384786 Numbers with a record number of unordered factorizations into 1 and prime powers p^e where p is prime and e >= 3 (A246549).

Original entry on oeis.org

1, 64, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592, 17179869184, 34359738368, 68719476736
Offset: 1

Views

Author

Amiram Eldar, Jun 10 2025

Keywords

Comments

The least term that is not a power of 2 is a(85) = 2^61 * 3^18.
Indices of records of the multiplicative function f(n) with f(p^e) = A008483(e).
All the terms are cubefull numbers since f(1) = 1 and f(n) = 0 if n is a noncubefull number.
The corresponding record values are 1, 2, 3, 4, 5, 6, 9, 10, 13, 17, 21, 25, 33, 39, 49, ... (see the link for more values).

Crossrefs

Subsequence of A001694 and A025487 (i.e., of A181800).
Cf. A008483, A046055, A246549, A384784 (powerful analog), A384785.

Programs

  • Mathematica
    f[p_, e_] := PartitionsP[e] - PartitionsP[e-1] - PartitionsP[e-2] + PartitionsP[e-3]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; With[{lps = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]}, sm = -1; seq = {}; Do[s1 = s[lps[[i]]]; If[s1 > sm, sm = s1; AppendTo[seq, lps[[i]]]], {i, 1, Length[lps]}]; seq]
Showing 1-2 of 2 results.