cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A384820 G.f. A(x) = exp( Sum_{n>=1} (n^2 - A384819(n))*x^n/n ) where A384819(k) < k for k >= 1 such that A(x) is a power series with integral coefficients.

Original entry on oeis.org

1, 1, 2, 4, 8, 14, 25, 43, 74, 124, 205, 335, 543, 869, 1379, 2170, 3388, 5249, 8079, 12353, 18776, 28375, 42651, 63782, 94923, 140614, 207384, 304578, 445528, 649200, 942495, 1363447, 1965697, 2824676, 4046190, 5778273, 8227533, 11681632, 16540183, 23357053, 32898242
Offset: 0

Views

Author

Paul D. Hanna, Jun 18 2025

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 14*x^5 + 25*x^6 + 43*x^7 + 74*x^8 + 124*x^9 + 205*x^10 + 335*x^11 + 543*x^12 + 869*x^13 + 1379*x^14 + 2170*x^15 + 3388*x^16 + ...
where log(A(x)) = x/(1-x)^2 - D(x) and D(x) is the l.g.f. of A384819:
D(x) = 0*x + 1*x^2/2 + 2*x^3/3 + 1*x^4/4 + 4*x^5/5 + 3*x^6/6 + 6*x^7/7 + 1*x^8/8 + 2*x^9/9 + 7*x^10/10 + 10*x^11/11 + 3*x^12/12 + 12*x^13/13 + 11*x^14/14 + 3*x^15/15 + 1*x^16/16 + ... + A384819(n)*x^n/n + ...
		

Crossrefs

Cf. A384819, A082579 (exp(x/(1-x)^2)).

Programs

  • PARI
    {a(n) = my(L=[1],A=1); for(i=1,n, L = concat(L,t);
    for(t=1,(#L)^2+1, if( denominator( eval(polcoef( A = exp( intformal(Ser(L)) ),#L)) )==1, L[#L] = t + (#L)*(#L-1); break)) ); polcoef(A,n)}
    for(n=0,40, print1(a(n),", "))
Showing 1-1 of 1 results.