cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A384821 G.f. A(x) satisfies -1/x = Sum_{n=-oo..+oo} A(x)^n * x^n * (1 - x^n)^(n+2).

Original entry on oeis.org

1, 2, 5, 22, 91, 416, 1978, 9738, 49181, 253572, 1328528, 7053672, 37866294, 205188765, 1120824743, 6165155890, 34119043994, 189839648588, 1061344406923, 5959197795092, 33588952625106, 189986944364176, 1078034452020854, 6134848540680166, 35005230073846833, 200229444332667654
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2025

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 22*x^3 + 91*x^4 + 416*x^5 + 1978*x^6 + 9738*x^7 + 49181*x^8 + 253572*x^9 + 1328528*x^10 + ...
SPECIFIC VALUES.
A(t) = 2 at t = 0.162924020448782314256916956456618618555937137963260...
A(t) = 9/5 at t = 0.15713093477961462528780113190237390843002535981643...
A(t) = 8/5 at t = 0.14467881602482935797425598908263109752382579929421...
A(t) = 3/2 at t = 0.13461615563760120581581313629107981605312435881819...
A(t) = 4/3 at t = 0.10915621052082212882653574706851509193398803739915...
A(1/7) = 1.5793911503434252677981671019480264164820055324466...
A(1/8) = 1.4268350851974567615394958810072981944850896947894...
A(1/9) = 1.3435470274993477728207146854713823085043981519155...
A(1/10) = 1.2892440747830023480637465318368592024118039394009...
A(1/11) = 1.2505209808081799972669805855553805055082827658365...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1,2,0]); for(i=1, n, A = concat(A, 0);
    A[#A-1] = polcoeff( sum(m=-#A, #A, x^m * Ser(A)^m * (1 - x^m +x*O(x^n))^(m+2) ), #A-4)); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) -1/x = Sum_{n=-oo..+oo} A(x)^n * x^n * (1 - x^n)^(n+2).
(2) -x = Sum_{n=-oo..+oo, n<>0} (-1/A(x))^n * x^((n-1)*(n-2)) / (1 - x^n)^(n-2).
a(n) ~ c * d^n / n^(3/2), where d = 6.07021478936467894926862346663483720359... and c = 0.6881950589132830412100382237325446... - Vaclav Kotesovec, Jun 11 2025

A384823 G.f. A(x) satisfies -1/x^11 = Sum_{n=-oo..+oo} A(x)^n * x^n * (1 - x^n)^(n+6).

Original entry on oeis.org

1, 1, 4, 28, 173, 1262, 9593, 75928, 618342, 5149640, 43650123, 375347585, 3266282211, 28709930633, 254526671024, 2273271614848, 20435110855838, 184745786960642, 1678668998195885, 15321962225034079, 140418372363945954, 1291587696225346583, 11919771215919819476, 110338977972166474055
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2025

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 28*x^3 + 173*x^4 + 1262*x^5 + 9593*x^6 + 75928*x^7 + 618342*x^8 + 5149640*x^9 + 43650123*x^10 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1,1,0,0,0]); for(i=1, n, A = concat(A, 0);
    A[#A-3] = polcoeff( sum(m=-#A, #A, x^m * Ser(A)^m * (1 - x^m +x*O(x^n))^(m+6) ), #A-16)); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) -1/x^11 = Sum_{n=-oo..+oo} A(x)^n * x^n * (1 - x^n)^(n+6).
(2) -x = Sum_{n=-oo..+oo, n<>0} (-1/A(x))^n * x^((n-3)*(n-4)) / (1 - x^n)^(n-6).
a(n) ~ c * d^n / n^(3/2), where d = 9.887717015668710733345454711929087306... and c = 0.160435430066288197856237263106693... - Vaclav Kotesovec, Jun 11 2025

A384824 G.f. A(x) satisfies 1/x^19 = Sum_{n=-oo..+oo} A(x)^n * x^n * (1 - x^n)^(n+8).

Original entry on oeis.org

1, 1, 5, 38, 319, 2871, 27507, 273925, 2808973, 29457644, 314470771, 3405995019, 37334767867, 413397265017, 4617060957512, 51951448775027, 588371324004508, 6701761863368579, 76723673176823126, 882342098781937683, 10188542630975395255, 118082022786322630334, 1373108879790849494070
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2025

Keywords

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 38*x^3 + 319*x^4 + 2871*x^5 + 27507*x^6 + 273925*x^7 + 2808973*x^8 + 29457644*x^9 + 314470771*x^10 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1,1,0,0,0,0]); for(i=1, n, A = concat(A, 0);
    A[#A-4] = -polcoeff( sum(m=-#A, #A, x^m * Ser(A)^m * (1 - x^m +x*O(x^n))^(m+8) ), #A-25)); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) 1/x^19 = Sum_{n=-oo..+oo} A(x)^n * x^n * (1 - x^n)^(n+8).
(2) x = Sum_{n=-oo..+oo, n<>0} (-1/A(x))^n * x^((n-4)*(n-5)) / (1 - x^n)^(n-8).
a(n) ~ c * d^n / n^(3/2), where d = 12.46033620173328231233579215988893957838459959... and c = 0.113752375605091798753361983956448030623... - Vaclav Kotesovec, Jun 11 2025

A384825 G.f. A(x) satisfies -1/x^29 = Sum_{n=-oo..+oo} A(x)^n * x^n * (1 - x^n)^(n+10).

Original entry on oeis.org

1, 1, 6, 54, 542, 5955, 69114, 835140, 10391843, 132262619, 1713785727, 22531557603, 299817809184, 4030217936308, 54646151953660, 746513545616000, 10264746883787021, 141955200254335604, 1973170863256461516, 27551902179444882489, 386288077655575999571, 5435910477286670671340
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2025

Keywords

Examples

			G.f.: A(x) = 1 + x + 6*x^2 + 54*x^3 + 542*x^4 + 5955*x^5 + 69114*x^6 + 835140*x^7 + 10391843*x^8 + 132262619*x^9 + 1713785727*x^10 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1,1,0,0,0,0,0]); for(i=1, n, A = concat(A, 0);
    A[#A-5] = polcoeff( sum(m=-#A, #A, x^m * Ser(A)^m * (1 - x^m +x*O(x^n))^(m+10) ), #A-36)); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) -1/x^29 = Sum_{n=-oo..+oo} A(x)^n * x^n * (1 - x^n)^(n+10).
(2) -x = Sum_{n=-oo..+oo, n<>0} (-1/A(x))^n * x^((n-5)*(n-6)) / (1 - x^n)^(n-10).
a(n) ~ c * d^n / n^(3/2), where d = 15.130878695250901787504105640277512076291321821... and c = 0.088532592960846902874974330489987793829057... - Vaclav Kotesovec, Jun 11 2025

A384826 G.f. A(x) satisfies 1/x^41 = Sum_{n=-oo..+oo} A(x)^n * x^n * (1 - x^n)^(n+12).

Original entry on oeis.org

1, 1, 7, 73, 861, 11112, 151828, 2159179, 31627690, 473917665, 7230164079, 111926802631, 1753762735460, 27760507986844, 443257137593369, 7130838718144623, 115469073853104486, 1880570694656739472, 30784302913287253256, 506228988080918570208, 8358750672258509735440, 138528877561300962357350
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2025

Keywords

Examples

			G.f.: A(x) = 1 + x + 7*x^2 + 73*x^3 + 861*x^4 + 11112*x^5 + 151828*x^6 + 2159179*x^7 + 31627690*x^8 + 473917665*x^9 + 7230164079*x^10 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1,1,0,0,0,0,0,0]); for(i=1, n, A = concat(A, 0);
    A[#A-6] = -polcoeff( sum(m=-#A, #A, x^m * Ser(A)^m * (1 - x^m +x*O(x^n))^(m+12) ), #A-49)); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) 1/x^41 = Sum_{n=-oo..+oo} A(x)^n * x^n * (1 - x^n)^(n+12).
(2) x = Sum_{n=-oo..+oo, n<>0} (-1/A(x))^n * x^((n-6)*(n-7)) / (1 - x^n)^(n-12).
a(n) ~ c * d^n / n^(3/2), where d = 17.821078213117779013059276484226766696509894506... and c = 0.072486824411461280676499747682168909434267... - Vaclav Kotesovec, Jun 11 2025

A384827 G.f. A(x) satisfies -1/x^55 = Sum_{n=-oo..+oo} A(x)^n * x^n * (1 - x^n)^(n+14).

Original entry on oeis.org

1, 1, 8, 95, 1288, 19116, 300511, 4918268, 82918049, 1430142380, 25115651237, 447578072658, 8073426806649, 147122009148252, 2704441907759235, 50088849266618466, 933792151007378231, 17509062834076661230, 329985690688947517626, 6247533413700369107192, 118768564127167799819733
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2025

Keywords

Examples

			G.f.: A(x) = 1 + x + 8*x^2 + 95*x^3 + 1288*x^4 + 19116*x^5 + 300511*x^6 + 4918268*x^7 + 82918049*x^8 + 1430142380*x^9 + 25115651237*x^10 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1,1,0,0,0,0,0,0,0]); for(i=1, n, A = concat(A, 0);
    A[#A-7] = polcoeff( sum(m=-#A, #A, x^m * Ser(A)^m * (1 - x^m +x*O(x^n))^(m+14) ), #A-64)); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) -1/x^55 = Sum_{n=-oo..+oo} A(x)^n * x^n * (1 - x^n)^(n+14).
(2) -x = Sum_{n=-oo..+oo, n<>0} (-1/A(x))^n * x^((n-7)*(n-8)) / (1 - x^n)^(n-14).
a(n) ~ c * d^n / n^(3/2), where d = 20.5190724870235230419993391970202418416256614273528... and c = 0.06135641554365612129872100433075021800206923942... - Vaclav Kotesovec, Jun 11 2025

A384828 G.f. A(x) satisfies 1/x^71 = Sum_{n=-oo..+oo} A(x)^n * x^n * (1 - x^n)^(n+16).

Original entry on oeis.org

1, 1, 9, 120, 1839, 30862, 548783, 10160786, 193811734, 3782270289, 75158649892, 1515578476370, 30935212293083, 637920390487505, 13269865608471203, 278121828806207328, 5867506406619195047, 124502776024601555996, 2655381364988431518262, 56892952987400631546208, 1223972213493916563960331
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2025

Keywords

Examples

			G.f.: A(x) = 1 + x + 9*x^2 + 120*x^3 + 1839*x^4 + 30862*x^5 + 548783*x^6 + 10160786*x^7 + 193811734*x^8 + 3782270289*x^9 + 75158649892*x^10 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1,1,0,0,0,0,0,0,0,0]); for(i=1, n, A = concat(A, 0);
    A[#A-8] = -polcoeff( sum(m=-#A, #A, x^m * Ser(A)^m * (1 - x^m +x*O(x^n))^(m+16) ), #A-81)); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) 1/x^71 = Sum_{n=-oo..+oo} A(x)^n * x^n * (1 - x^n)^(n+16).
(2) x = Sum_{n=-oo..+oo, n<>0} (-1/A(x))^n * x^((n-8)*(n-9)) / (1 - x^n)^(n-16).
a(n) ~ c * d^n / n^(3/2), where d = 23.2218466497883684132359544378917382382303363986... and c = 0.05318473987345007866210446949223464954972731... - Vaclav Kotesovec, Jun 11 2025
Showing 1-7 of 7 results.