A384832 G.f. A(x) = Sum_{n>=0} x^n * Product_{k=0..n} ((1+x)^(n-k+1) - x^k).
1, 2, 4, 13, 41, 144, 533, 2072, 8463, 36142, 160852, 744491, 3576342, 17796825, 91587499, 486686277, 2666612930, 15045088274, 87301643726, 520416443472, 3183640482658, 19967208261651, 128273336978302, 843360769602607, 5670286993205471, 38957428760628861, 273318099568893757, 1956848333035887861
Offset: 1
Keywords
Examples
G.f.: A(x) = x + 2*x^2 + 4*x^3 + 13*x^4 + 41*x^5 + 144*x^6 + 533*x^7 + 2072*x^8 + 8463*x^9 + 36142*x^10 + 160852*x^11 + 744491*x^12 + ... where A(x) = 1 * ((1+x) - 1) + x * ((1+x)^2 - 1)*((1+x) - x) + x^2 * ((1+x)^3 - 1)*((1+x)^2 - x)*((1+x) - x^2) + x^3 * ((1+x)^4 - 1)*((1+x)^3 - x)*((1+x)^2 - x^2)*((1+x) - x^3) + x^4 * ((1+x)^5 - 1)*((1+x)^4 - x)*((1+x)^3 - x^2)*((1+x)^2 - x^3)*((1+x) - x^4) + x^5 * ((1+x)^6 - 1)*((1+x)^5 - x)*((1+x)^4 - x^2)*((1+x)^3 - x^3)*((1+x)^2 - x^4)*((1+x) - x^5) + x^6 * ((1+x)^7 - 1)*((1+x)^6 - x)*((1+x)^5 - x^2)*((1+x)^4 - x^3)*((1+x)^3 - x^4)*((1+x)^2 - x^5)*((1+x) - x^6) + ... equivalently, A(x) = x + (2*x^2 + x^3) + (3*x^3 + 9*x^4 + 10*x^5 + 5*x^6 - 2*x^7 - 3*x^8 - x^9) + (4*x^4 + 26*x^5 + 78*x^6 + 139*x^7 + 147*x^8 + 73*x^9 - 25*x^10 - 65*x^11 - 45*x^12 - 15*x^13 - 2*x^14) + (5*x^5 + 55*x^6 + 290*x^7 + 965*x^8 + 2226*x^9 + 3689*x^10 + 4378*x^11 + 3463*x^12 + 1184*x^13 - 1161*x^14 - 2296*x^15 - 2002*x^16 - 1034*x^17 - 239*x^18 + 85*x^19 + 102*x^20 + 44*x^21 + 10*x^22 + x^23) + (6*x^6 + 99*x^7 + 794*x^8 + 4099*x^9 + 15185*x^10 + 42667*x^11 + 93837*x^12 + 164301*x^13 + 229972*x^14 + 253682*x^15 + 208380*x^16 + 100483*x^17 - 28293*x^18 - 125093*x^19 - 157729*x^20 - 130285*x^21 - 73656*x^22 - 21858*x^23 + 7068*x^24 + 14241*x^25 + 10381*x^26 + 4903*x^27 + 1605*x^28 + 355*x^29 + 48*x^30 + 3*x^31) + ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 1..300
Crossrefs
Cf. A121690.
Programs
-
PARI
{a(n) = my(A = sum(m=0,n, x^m * prod(k=0,m, (1+x)^(m-k+1) - x^k +x*O(x^n)) )); polcoef(A,n)} for(n=1,30,print1(a(n),", "))