cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384832 G.f. A(x) = Sum_{n>=0} x^n * Product_{k=0..n} ((1+x)^(n-k+1) - x^k).

Original entry on oeis.org

1, 2, 4, 13, 41, 144, 533, 2072, 8463, 36142, 160852, 744491, 3576342, 17796825, 91587499, 486686277, 2666612930, 15045088274, 87301643726, 520416443472, 3183640482658, 19967208261651, 128273336978302, 843360769602607, 5670286993205471, 38957428760628861, 273318099568893757, 1956848333035887861
Offset: 1

Views

Author

Paul D. Hanna, Jun 29 2025

Keywords

Examples

			G.f.: A(x) = x + 2*x^2 + 4*x^3 + 13*x^4 + 41*x^5 + 144*x^6 + 533*x^7 + 2072*x^8 + 8463*x^9 + 36142*x^10 + 160852*x^11 + 744491*x^12 + ...
where
A(x) = 1 * ((1+x) - 1) +
  x * ((1+x)^2 - 1)*((1+x) - x) +
  x^2 * ((1+x)^3 - 1)*((1+x)^2 - x)*((1+x) - x^2) +
  x^3 * ((1+x)^4 - 1)*((1+x)^3 - x)*((1+x)^2 - x^2)*((1+x) - x^3) +
  x^4 * ((1+x)^5 - 1)*((1+x)^4 - x)*((1+x)^3 - x^2)*((1+x)^2 - x^3)*((1+x) - x^4) +
  x^5 * ((1+x)^6 - 1)*((1+x)^5 - x)*((1+x)^4 - x^2)*((1+x)^3 - x^3)*((1+x)^2 - x^4)*((1+x) - x^5) +
  x^6 * ((1+x)^7 - 1)*((1+x)^6 - x)*((1+x)^5 - x^2)*((1+x)^4 - x^3)*((1+x)^3 - x^4)*((1+x)^2 - x^5)*((1+x) - x^6) + ...
equivalently,
A(x) = x +
  (2*x^2 + x^3) +
  (3*x^3 + 9*x^4 + 10*x^5 + 5*x^6 - 2*x^7 - 3*x^8 - x^9) +
  (4*x^4 + 26*x^5 + 78*x^6 + 139*x^7 + 147*x^8 + 73*x^9 - 25*x^10 - 65*x^11 - 45*x^12 - 15*x^13 - 2*x^14) +
  (5*x^5 + 55*x^6 + 290*x^7 + 965*x^8 + 2226*x^9 + 3689*x^10 + 4378*x^11 + 3463*x^12 + 1184*x^13 - 1161*x^14 - 2296*x^15 - 2002*x^16 - 1034*x^17 - 239*x^18 + 85*x^19 + 102*x^20 + 44*x^21 + 10*x^22 + x^23) +
  (6*x^6 + 99*x^7 + 794*x^8 + 4099*x^9 + 15185*x^10 + 42667*x^11 + 93837*x^12 + 164301*x^13 + 229972*x^14 + 253682*x^15 + 208380*x^16 + 100483*x^17 - 28293*x^18 - 125093*x^19 - 157729*x^20 - 130285*x^21 - 73656*x^22 - 21858*x^23 + 7068*x^24 + 14241*x^25 + 10381*x^26 + 4903*x^27 + 1605*x^28 + 355*x^29 + 48*x^30 + 3*x^31) + ...
		

Crossrefs

Cf. A121690.

Programs

  • PARI
    {a(n) = my(A = sum(m=0,n, x^m * prod(k=0,m, (1+x)^(m-k+1) - x^k +x*O(x^n)) )); polcoef(A,n)}
    for(n=1,30,print1(a(n),", "))