cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384844 Triangle read by rows: T(n,k) is the number of unordered pairs of nodes at distance k in the n-Dorogovtsev-Goltsev-Mendes graph.

Original entry on oeis.org

3, 9, 6, 27, 57, 21, 81, 351, 369, 60, 243, 1806, 3582, 1716, 156, 729, 8472, 26346, 24216, 6648, 384, 2187, 37683, 165375, 241032, 128880, 22896, 912, 6561, 162177, 938907, 1946676, 1670280, 584784, 72624, 2112, 19683, 683112, 4979928, 13697148, 16889340, 9580368, 2366256, 216768, 4800
Offset: 1

Views

Author

Andrew Howroyd, Jun 10 2025

Keywords

Examples

			Triangle begins:
     3;
     9,     6;
    27,    57,     21;
    81,   351,    369,     60;
   243,  1806,   3582,   1716,    156;
   729,  8472,  26346,  24216,   6648,   384;
  2187, 37683, 165375, 241032, 128880, 22896, 912;
  ...
		

Crossrefs

Main diagonal is A113070(n-1) for n > 1.
Column 1 is A000244.
Cf. A384843.

Programs

  • PARI
    T(n)={ my(c=x^2*y/((1 - x)*(1 - 3*x + 2*(1 - y)*x^2)) + O(x*x^n), b=(1-2*x)*c/x, g = y*(1+b+2*c) + serconvol(b + c, b + c + y*c) + serconvol(y*c, b + 2*c)); [Vecrev(p/y)|p<-Vec(3*g/(1 - 3*x))]}
    { foreach(T(10), row, print(row)) }
    
  • PARI
    T(n)={my(g=3*(1 - 2*(3 + y)*x + 3*(3 - y + y^2)*x^2 - 4*(1 - y)^2*x^3)/((1 - x)*(1 - 3*x)*(1 - (5 + 4*y)*x + 4*(1 - y)^2*x^2))); [Vecrev(p)|p<-Vec(g + O(x^n))]}
    { foreach(T(10), row, print(row)) }

Formula

G.f.: 3*x*y*(1 - 2*(3 + y)*x + 3*(3 - y + y^2)*x^2 - 4*(1 - y)^2*x^3)/((1 - x)*(1 - 3*x)*(1 - (5 + 4*y)*x + 4*(1 - y)^2*x^2)).
A384843(n) = Sum_{k=1..n} k*T(n,k).