A384851 Decimal expansion of minimal radius of a circle that contains 14 non-overlapping unit disks.
4, 3, 2, 8, 4, 2, 8, 5, 5, 4, 8, 6, 0, 8, 3, 6, 6, 8, 1, 4, 0, 3, 9, 0, 9, 3, 6, 7, 4, 7, 8, 1, 8, 1, 0, 9, 1, 6, 0, 8, 4, 9, 5, 7, 2, 9, 6, 5, 8, 6, 7, 5, 7, 0, 1, 2, 4, 5, 7, 5, 4, 8, 5, 5, 2, 2, 1, 1, 3, 3, 7, 0, 4, 5, 4, 0, 2, 1, 3, 8, 6, 3, 1, 9, 7, 5, 7
Offset: 1
Examples
4.328428554860836681403909367478181...
Links
- Dinesh B. Ekanayake and Douglas J. LaFountain, Tight partitions for packing circles in a circle, Italian Journal of Pure and Applied Mathematics, 51 (2024), 115-136.
- Michael Goldberg, Packing of 14, 16, 17 and 20 Circles in a Circle, Mathematics Magazine, Vol. 44, No. 3 (May, 1971), pp. 134-139 (provides D/d=4.3284 in Table 1, page 136).
Programs
-
PARI
1+sqrt(1+polrootsreal(Pol([707281, -27270266, 472689975, -4930771548, 34449512067, -168736166642, 591369611109, -1498751280720, 2767422383674, -3746579404052, 3734397946902, -2743990597288, 1486108072662, -593729401364, 175537055738, -38557290064, 6295485573, -759438450, 66647843, -4134492, 172311, -4346, 49]))[10])