A384853 Squared length of interior diagonal of n-th (U, V)-crossbox, where U = (1, 0, 1) and V = (0, 1, 0), as in Comments.
1, 5, 9, 21, 57, 165, 489, 1461, 4377, 13125, 39369, 118101, 354297, 1062885, 3188649, 9565941, 28697817, 86093445, 258280329, 774840981, 2324522937, 6973568805, 20920706409, 62762119221, 188286357657, 564859072965, 1694577218889, 5083731656661
Offset: 1
Keywords
Examples
Taking U = (1, 0, 1) and V = (0, 1, 0), successive edge vectors are given by (f(n)) = ( (1, 0, 1), (-1,0,1), (-1,2,-1), (3,0,-3), (3,-6,3), ...) (g(n)) = ( (0,1,0), (2,1,0), (2,-1,2), (-2,1,4), (-2,7,-2), (10,1,-8), ...) (h(n)) = ( (-1.0,1), (-1,2,-1), (3,0,-3), (3,-6,3), (-9,0,9),...) The successive volumes are (2, 6, 18, 54, 162, 486, 1458, 4374, 13122,...). The lengths of diagonals of the first five crossboxes are 1, sqrt(5), 3, sqrt(21), sqrt(57), so the first five squared lengths are 1, 5, 9, 21, 57.
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-3).
Programs
-
Mathematica
f[1] = {1, 0, 1}; g[1] = {0, 1, 0}; h[1] = Cross[f[1], g[1]]; f[n_] := f[n] = h[n - 1]; g[n_] := g[n] = f[n - 1] + g[n - 1] - h[n - 1]; h[n_] := h[n] = Cross[f[n], g[n]]; v[n_] := f[n] . Cross[g[n], h[n]] (* signed volume of nth parallelopiped P(n) *) d[n_] := Norm[g[n]] (* length of interior diagonal of P(n) *) Column[Table[{f[n], g[n], h[n]}, {n, 1, 16}]] (* edge vectors of P(n) *) Table[v[n], {n, 1, 16}] (* A008776 *) u = Table[d[n]^2, {n, 1, 30}] (* A384853 *) Join[{1},Table[1+2*(3^(n-1)+1),{n,40}]] (* or *) LinearRecurrence[{4,-3},{1,5,9},50] (* Harvey P. Dale, Jul 20 2025 *)
Formula
a(0) = 1, a(n) = 1 + 2 * (3^(n-1)+1) for n>=1.
a(n) = 4*a(n-1) - 3*a(n-2) for n>=4.
In general, suppose that U = (a,b,c) and V = (s,t,u), and let D = -(a^2 + b^2 + c^2 + s^2 + t^2 + u^2 + 2 (a s + b t + c u)). Then, linear recurrences are given for n>=3 by f(n) = D*f (n - 2), g(n) = g(n - 1) + D*g(n - 2) - D*g(n - 3), h(n) = D*h(n - 2). If w(n) denotes the volume of the n-th (U,V)-crossbox, then w(n) = D*w(n-1) for n>=2.
Comments